Introduction to Information Retrieval http://informationretrieval.org

IIR 6&7: Vector Space Model

Hinrich Schütze

Institute for Natural Language Processing, University of Stuttgart

2011-08-29

Models and Methods

- Boolean model and its limitations (30)
- Vector space model (30)
- Probabilistic models (30)
- Language model-based retrieval (30)
- Latent semantic indexing (30)
- Learning to rank (30)

• tf-idf weighting: Quick review of tf-idf weighting

- tf-idf weighting: Quick review of tf-idf weighting
- Vector space model represents queries and documents in a high-dimensional space.

- tf-idf weighting: Quick review of tf-idf weighting
- Vector space model represents queries and documents in a high-dimensional space.
- Pivot normalization (or "pivoted document length normalization"): alternative to cosine normalization that removes a bias inherent in standard length normalization

Outline

2 Vector space model

. . .

Binary incidence matrix

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
CAESAR	1	1	0	1	1	1	
CALPURNIA	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Each document is represented as a binary vector $\in \{0,1\}^{|V|}$.

. . .

Binary incidence matrix

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra		-				
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
CAESAR	1	1	0	1	1	1	
CALPURNIA	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Each document is represented as a binary vector $\in \{0,1\}^{|V|}$.

Count matrix

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
CAESAR	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
Cleopatra	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}$.

Count matrix

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
ANTHONY	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
CAESAR	232	227	0	2	1	0	
CALPURNIA	0	10	0	0	0	0	
Cleopatra	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}$.

• The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to rank documents according to query-document matching scores and use tf as a component in these matching scores.

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to rank documents according to query-document matching scores and use tf as a component in these matching scores.
- But how?

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to rank documents according to query-document matching scores and use tf as a component in these matching scores.
- But how?
- Raw term frequency is not what we want because:

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to rank documents according to query-document matching scores and use tf as a component in these matching scores.
- But how?
- Raw term frequency is not what we want because:
- A document with tf = 10 occurrences of the term is more relevant than a document with tf = 1 occurrence of the term.

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to rank documents according to query-document matching scores and use tf as a component in these matching scores.
- But how?
- Raw term frequency is not what we want because:
- A document with tf = 10 occurrences of the term is more relevant than a document with tf = 1 occurrence of the term.
- But not 10 times more relevant.

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to rank documents according to query-document matching scores and use tf as a component in these matching scores.
- But how?
- Raw term frequency is not what we want because:
- A document with tf = 10 occurrences of the term is more relevant than a document with tf = 1 occurrence of the term.
- But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

• The log frequency weight of term t in d is defined as follows

$$\mathsf{w}_{t,d} = \begin{cases} 1 + \log_{10} \mathsf{tf}_{t,d} & \text{if } \mathsf{tf}_{t,d} > 0\\ 0 & \text{otherwise} \end{cases}$$

• The log frequency weight of term t in d is defined as follows

$$\mathsf{w}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \text{if } \mathsf{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

•
$$\mathsf{tf}_{t,d} \to \mathsf{w}_{t,d}$$
:
 $0 \to 0, \ 1 \to 1, \ 2 \to 1.3, \ 10 \to 2, \ 1000 \to 4, \ \mathsf{etc.}$

• The log frequency weight of term t in d is defined as follows

$$\mathsf{w}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \text{if } \mathsf{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

•
$$\mathsf{tf}_{t,d} \to \mathsf{w}_{t,d}$$
:
 $0 \to 0, \ 1 \to 1, \ 2 \to 1.3, \ 10 \to 2, \ 1000 \to 4, \ \mathsf{etc.}$

• Matching score for a document-query pair: sum over terms t in both q and d: tf-matching-score $(q, d) = \sum_{t \in a \cap d} (1 + \log tf_{t,d})$

Frequency in document vs. frequency in collection

• In addition, to term frequency (the frequency of the term in the document) ...

Frequency in document vs. frequency in collection

- In addition, to term frequency (the frequency of the term in the document) ...
- ... we also want to use the frequency of the term in the collection for weighting and ranking.

• df_t is the document frequency, the number of documents that t occurs in.

- df_t is the document frequency, the number of documents that t occurs in.
- df_t is an inverse measure of the informativeness of term t.

- df_t is the document frequency, the number of documents that t occurs in.
- df_t is an inverse measure of the informativeness of term t.
- Inverse document frequency, idf_t, is a direct measure of the informativeness of the term.

- df_t is the document frequency, the number of documents that t occurs in.
- df_t is an inverse measure of the informativeness of term t.
- Inverse document frequency, idf_t, is a direct measure of the informativeness of the term.
- The idf weight of term t is defined as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \frac{N}{\mathsf{df}_t}$$

(*N* is the number of documents in the collection.)

- df_t is the document frequency, the number of documents that t occurs in.
- df_t is an inverse measure of the informativeness of term t.
- Inverse document frequency, idf_t, is a direct measure of the informativeness of the term.
- The idf weight of term t is defined as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \frac{N}{\mathsf{df}_t}$$

(*N* is the number of documents in the collection.)

[log N/df_t] instead of [N/df_t] to "dampen" the effect of idf

Examples for idf

Examples for idf

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{1,000,000}{\mathsf{df}_t}$$

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

tf-idf weighting

Effect of idf on ranking

Effect of idf on ranking

• idf gives high weights to rare terms like ARACHNOCENTRIC.

Effect of idf on ranking

- idf gives high weights to rare terms like ARACHNOCENTRIC.
- idf gives low weights to frequent words like GOOD, INCREASE, and LINE.

Effect of idf on ranking

- idf gives high weights to rare terms like ARACHNOCENTRIC.
- idf gives low weights to frequent words like GOOD, INCREASE, and LINE.
- idf affects the ranking of documents for queries with at least two terms.
Effect of idf on ranking

- idf gives high weights to rare terms like ARACHNOCENTRIC.
- idf gives low weights to frequent words like GOOD, INCREASE, and LINE.
- idf affects the ranking of documents for queries with at least two terms.
- For example, in the query "arachnocentric line", idf weighting increases the relative weight of ARACHNOCENTRIC and decreases the relative weight of LINE.

Effect of idf on ranking

- idf gives high weights to rare terms like ARACHNOCENTRIC.
- idf gives low weights to frequent words like GOOD, INCREASE, and LINE.
- idf affects the ranking of documents for queries with at least two terms.
- For example, in the query "arachnocentric line", idf weighting increases the relative weight of ARACHNOCENTRIC and decreases the relative weight of LINE.
- idf has little effect on ranking for one-term queries.

• Assign a tf-idf weight for each term t in each document d: $w_{t,d} = (1 + \log tf_{t,d}) \cdot \log \frac{N}{df_r}$

- Assign a tf-idf weight for each term t in each document d: $w_{t,d} = (1 + \log tf_{t,d}) \cdot \log \frac{N}{df_r}$
- The tf-idf weight ...

- Assign a tf-idf weight for each term t in each document d: $w_{t,d} = (1 + \log tf_{t,d}) \cdot \log \frac{N}{df_t}$
- The tf-idf weight ...
 - ... increases with the number of occurrences within a document. (term frequency component)

- Assign a tf-idf weight for each term t in each document d: $w_{t,d} = (1 + \log tf_{t,d}) \cdot \log \frac{N}{df_t}$
- The tf-idf weight ...
 - ... increases with the number of occurrences within a document. (term frequency component)
 - ... increases with the rarity of the term in the collection. (inverse document frequency component)

Outline

. . .

Binary incidence matrix

		Anthony	Julius Consor	The Tompost	Hamlet	Othello	Macbeth	
		anu	Caesar	Tempest				
		Cleopatra						
	Anthony	1	1	0	0	0	1	
	Brutus	1	1	0	1	0	0	
	CAESAR	1	1	0	1	1	1	
	CALPURNIA	0	1	0	0	0	0	
	Cleopatra	1	0	0	0	0	0	
	MERCY	1	0	1	1	1	1	
	WORSER	1	0	1	1	1	0	

Each document is represented as a binary vector $\in \{0,1\}^{|V|}$.

Count matrix

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
CAESAR	232	227	0	2	1	0	
CALPURNIA	0	10	0	0	0	0	
Cleopatra	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}$.

tf-idf weighting

. . .

Binary \rightarrow count \rightarrow weight matrix

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	5.25	3.18	0.0	0.0	0.0	0.35	
Brutus	1.21	6.10	0.0	1.0	0.0	0.0	
CAESAR	8.59	2.54	0.0	1.51	0.25	0.0	
Calpurnia	0.0	1.54	0.0	0.0	0.0	0.0	
Cleopatra	2.85	0.0	0.0	0.0	0.0	0.0	
MERCY	1.51	0.0	1.90	0.12	5.25	0.88	
WORSER	1.37	0.0	0.11	4.15	0.25	1.95	

Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}.$

tf-idf weighting

$Binary \rightarrow count \rightarrow weight matrix$

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	5.25	3.18	0.0	0.0	0.0	0.35	
Brutus	1.21	6.10	0.0	1.0	0.0	0.0	
CAESAR	8.59	2.54	0.0	1.51	0.25	0.0	
Calpurnia	0.0	1.54	0.0	0.0	0.0	0.0	
Cleopatra	2.85	0.0	0.0	0.0	0.0	0.0	
MERCY	1.51	0.0	1.90	0.12	5.25	0.88	
WORSER	1.37	0.0	0.11	4.15	0.25	1.95	

Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.

• Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.

- Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.

- Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.

- Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.

- Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to web search engines

- Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to web search engines
- Each vector is very sparse most entries are zero.

• Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space

- Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- Key idea 2: Rank documents according to their proximity to the query

- Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity

- Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity
- proximity pprox negative distance

- Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity
- proximity pprox negative distance
- Recall: We're doing this because we want to get away from the you're-either-in-or-out, feast-or-famine Boolean model.

- Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity
- proximity pprox negative distance
- Recall: We're doing this because we want to get away from the you're-either-in-or-out, feast-or-famine Boolean model.
- Instead: rank relevant documents higher than nonrelevant documents

• First cut: (negative) distance between two points

- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)

- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?

- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea ...

- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea ...
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

Why distance is a bad idea

The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

• Rank documents according to angle with query

- Rank documents according to angle with query
- The following two notions are equivalent.

- Rank documents according to angle with query
- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in decreasing order
Use angle instead of distance

- Rank documents according to angle with query
- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in decreasing order
 - Rank documents according to cosine(query,document) in increasing order

Use angle instead of distance

- Rank documents according to angle with query
- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in decreasing order
 - Rank documents according to cosine(query,document) in increasing order
- \bullet Cosine is a monotonically decreasing function of the angle for the interval $[0^\circ, 180^\circ]$

Use angle instead of distance

- Rank documents according to angle with query
- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in decreasing order
 - Rank documents according to cosine(query,document) in increasing order
- Cosine is a monotonically decreasing function of the angle for the interval $[0^\circ, 180^\circ]$
- ullet \rightarrow do ranking according to cosine

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \sum_{i=1}^{|V|} \frac{q_i}{|\vec{q}|} \cdot \frac{d_i}{|\vec{d}|}$$

۲

Cosine similarity between query and document

$$\cos(\vec{q},\vec{d}) = \text{SIM}(\vec{q},\vec{d}) = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \sum_{i=1}^{|V|} \frac{q_i}{|\vec{q}|} \cdot \frac{d_i}{|\vec{d}|}$$

• q_i is the tf-idf weight of term *i* in the query.

$\cos(\vec{q},\vec{d}) = \operatorname{SIM}(\vec{q},\vec{d}) = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \sum_{i=1}^{|V|} \frac{q_i}{|\vec{q}|} \cdot \frac{d_i}{|\vec{d}|}$

• q_i is the tf-idf weight of term i in the query.

• *d_i* is the tf-idf weight of term *i* in the document.

$$\cos(\vec{q}, \vec{d}) = \operatorname{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \sum_{i=1}^{|V|} \frac{q_i}{|\vec{q}|} \cdot \frac{d_i}{|\vec{d}|}$$

- q_i is the tf-idf weight of term i in the query.
- *d_i* is the tf-idf weight of term *i* in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .

$$\cos(\vec{q}, \vec{d}) = \operatorname{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \sum_{i=1}^{|V|} \frac{q_i}{|\vec{q}|} \cdot \frac{d_i}{|\vec{d}|}$$

- q_i is the tf-idf weight of term i in the query.
- *d_i* is the tf-idf weight of term *i* in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .
- This is the cosine similarity of \vec{q} and \vec{d} or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

$$\cos(\vec{q},\vec{d}) = \operatorname{SIM}(\vec{q},\vec{d}) = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \sum_{i=1}^{|V|} \frac{q_i}{|\vec{q}|} \cdot \frac{d_i}{|\vec{d}|}$$

- q_i is the tf-idf weight of term i in the query.
- *d_i* is the tf-idf weight of term *i* in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .
- This is the cosine similarity of \vec{q} and \vec{d} or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .
- cosine similarity = dot product of length-normalized vectors

Cosine similarity illustrated

Cosine similarity illustrated

Components of tf-idf weighting

Term	frequency	Docum	ent frequency	Normalization				
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1			
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$			
a (augmented)	$0.5 + \frac{0.5 \times \text{tf}_{t,d}}{\max_t(\text{tf}_{t,d})}$	p (prob idf)	$\max\{0, \log \frac{N - \mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u			
b (boolean)	$\begin{cases} 1 & \text{if } \text{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$			
L (log ave)	$\frac{1 + \log(\mathrm{tf}_{t,d})}{1 + \log(\mathrm{ave}_{t \in d}(\mathrm{tf}_{t,d}))}$							

tf-idf weighting

Components of tf-idf weighting

Term	frequency	Docum	ent frequency	Normalization				
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1			
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$			
a (augmented)	$0.5 + \frac{0.5 \times \text{tf}_{t,d}}{\max_t(\text{tf}_{t,d})}$	p (prob idf)	$\max\{0,\log\tfrac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u			
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$			
L (log ave)	$\frac{1 + \log(\mathrm{tf}_{t,d})}{1 + \log(\mathrm{ave}_{t \in d}(\mathrm{tf}_{t,d}))}$							

Best known combination of weighting options

• We often use different weightings for queries and documents.

- We often use different weightings for queries and documents.
- Notation: ddd.qqq

- We often use different weightings for queries and documents.
- Notation: ddd.qqq
- Example: Inc.Itn

- We often use different weightings for queries and documents.
- Notation: ddd.qqq
- Example: Inc.ltn
- document: logarithmic tf, no df weighting, cosine normalization

- We often use different weightings for queries and documents.
- Notation: ddd.qqq
- Example: Inc.ltn
- document: logarithmic tf, no df weighting, cosine normalization
- query: logarithmic tf, idf, no normalization

- We often use different weightings for queries and documents.
- Notation: ddd.qqq
- Example: Inc.ltn
- document: logarithmic tf, no df weighting, cosine normalization
- query: logarithmic tf, idf, no normalization
- Isn't it bad to not idf-weight the document?

- We often use different weightings for queries and documents.
- Notation: ddd.qqq
- Example: Inc.ltn
- document: logarithmic tf, no df weighting, cosine normalization
- query: logarithmic tf, idf, no normalization
- Isn't it bad to not idf-weight the document?
- Example query: "best car insurance"

- We often use different weightings for queries and documents.
- Notation: ddd.qqq
- Example: Inc.ltn
- document: logarithmic tf, no df weighting, cosine normalization
- query: logarithmic tf, idf, no normalization
- Isn't it bad to not idf-weight the document?
- Example query: "best car insurance"
- Example document: "car insurance auto insurance"

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto										
best										
car										
insurance										

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0									
best	1									
car	1									
insurance	1									

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0					1				
best	1					0				
car	1					1				
insurance	1					2				

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0				1				
best	1	1				0				
car	1	1				1				
insurance	1	1				2				

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0				1	1			
best	1	1				0	0			
car	1	1				1	1			
insurance	1	1				2	1.3			

word			query					product		
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000			1	1			
best	1	1	50000			0	0			
car	1	1	10000			1	1			
insurance	1	1	1000			2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query					product		
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3		1	1			
best	1	1	50000	1.3		0	0			
car	1	1	10000	2.0		1	1			
insurance	1	1	1000	3.0		2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query					product		
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1			
best	1	1	50000	1.3	1.3	0	0			
car	1	1	10000	2.0	2.0	1	1			
insurance	1	1	1000	3.0	3.0	2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query					product		
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1			
best	1	1	50000	1.3	1.3	0	0			
car	1	1	10000	2.0	2.0	1	1			
insurance	1	1	1000	3.0	3.0	2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query					product		
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1		
best	1	1	50000	1.3	1.3	0	0	0		
car	1	1	10000	2.0	2.0	1	1	1		
insurance	1	1	1000	3.0	3.0	2	1.3	1.3		

Query: "best car insurance". Document: "car insurance auto insurance".

word	query					document				product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	
best	1	1	50000	1.3	1.3	0	0	0	0	
car	1	1	10000	2.0	2.0	1	1	1	0.52	
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	

Query: "best car insurance". Document: "car insurance auto insurance".

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92 \\ 1/1.92 \approx 0.52$$

 $1.3/1.92\approx 0.68$

word	query					document				product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Query: "best car insurance". Document: "car insurance auto insurance".

word	query					document				product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Query: "best car insurance". Document: "car insurance auto insurance".

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

Final similarity score between query and document: $\sum_{i} w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$
Outline

1 tf-idf weighting

• Query q: "anti-doping rules Beijing 2008 olympics"

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 Olympics

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 Olympics
 - d₂: a long document that consists of a copy of d₁ and 5 other news stories, all on topics different from Olympics/anti-doping

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 Olympics
 - d₂: a long document that consists of a copy of d₁ and 5 other news stories, all on topics different from Olympics/anti-doping
 - *d*₃: a short document on anti-doping rules at the 2004 Athens Olympics

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 Olympics
 - d₂: a long document that consists of a copy of d₁ and 5 other news stories, all on topics different from Olympics/anti-doping
 - *d*₃: a short document on anti-doping rules at the 2004 Athens Olympics
- What ranking do we expect in the vector space model?

 Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).

- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: "turning" the average normalization on the pivot

- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: "turning" the average normalization on the pivot
- Effect: Similarities of short documents with query decrease; similarities of long documents with query increase.

- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: "turning" the average normalization on the pivot
- Effect: Similarities of short documents with query decrease; similarities of long documents with query increase.
- This removes the unfair advantage that short documents have.

- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: "turning" the average normalization on the pivot
- Effect: Similarities of short documents with query decrease; similarities of long documents with query increase.
- This removes the unfair advantage that short documents have.
- Singhal's study is also interesting from the point of view of methodology.

Predicted and true probability of relevance

Predicted and true probability of relevance

Cosine Normalization Factor

source: Lillian Lee

Pivoted normalization: Amit Singhal's experiments

Pivoted normalization: Amit Singhal's experiments

	Pivoted Cosine Normalization				
Cosine	Cosine Slope				
	0.60	0.65	0.70	0.75	0.80
6,526	6,342	6,458	6,574	6,629	$6,\!671$
0.2840	0.3024	0.3097	0.3144	0.3171	0.3162
Improvement	+ 6.5%	+ 9.0%	+10.7%	+11.7%	+11.3%

(relevant documents retrieved and (change in) average precision) $% \left(\left({{{\mathbf{r}}_{i}}} \right) \right)$

• Represent each document as a weighted tf-idf vector

- Represent each document as a weighted tf-idf vector
- Represent the query as a weighted tf-idf vector

- Represent each document as a weighted tf-idf vector
- Represent the query as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector

- Represent each document as a weighted tf-idf vector
- Represent the query as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector
 - Alternatively, use pivot normalization

- Represent each document as a weighted tf-idf vector
- Represent the query as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector
 - Alternatively, use pivot normalization
- Rank documents with respect to the query

- Represent each document as a weighted tf-idf vector
- Represent the query as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector
 - Alternatively, use pivot normalization
- Rank documents with respect to the query
- Return the top K (e.g., K = 10) to the user

Take-away

- tf-idf weighting: Quick review of tf-idf weighting
- Vector space model represents queries and documents in a high-dimensional space.
- Pivot normalization (or "pivoted document length normalization"): alternative to cosine normalization that removes a bias inherent in standard length normalization

Resources

- Chapters 6 and 7 of Introduction to Information Retrieval
- Resources at http://informationretrieval.org/essir2011
 - Gerard Salton (main proponent of vector space model in 70s, 80s, 90s)
 - Exploring the similarity space (Moffat and Zobel, 2005)
 - Pivot normalization (original paper)