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Aims and Goals of Computational Linguistics

� To be able to understand and act on human languages

� To be able to fluently produce human languages

� Applied goals: machine translation, question answer-

ing, information retrieval, speech-driven personal as-

sistants, text mining, report generation, . . .

The big questions for linguistic science

� What kinds of things do people say?

� What do these things say/ask/request about the world?

I will argue that answering these involves questions of

frequency, probability, and likelihood
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Natural language understanding traditions

� The logical tradition

� Gave up the goal of dealing with imperfect natural

languages in the development of formal logics

� But the tools were taken and re-applied to natural

languages (Lambek 1958, Montague 1973, etc.)

� These tools give rich descriptions of natural lan-

guage structure, and particularly the construction

of sentence meanings (e.g., Carpenter 1999)

ñ NP:α NP\S:β
S:β(α)

� They don’t tell us about word meaning or use
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Natural language understanding traditions

� The formal language theory tradition (Chomsky 1957)

� Languages are generated by a grammar, which de-

fines the strings that are members of the language

(others are ungrammatical)

ñ NP → Det Adj* N Adj → clever

� The generation process of the grammar puts struc-

tures over these language strings

� This process is reversed in parsing the language

� These ideas are still usually present in the symbolic

backbone of most statistical NLP systems

� Often insufficient attention to meaning
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Why Probabilistic Language Understanding?

� Language use is situated in a world context

� People write or say the little that is needed to be

understood in a certain discourse situation

� Consequently

� Language is highly ambiguous

� Tasks like interpretation and translation involve

(probabilistically) reasoning about meaning, using

world knowledge not in the source text

� We thus need to explore quantitative techniques that

move away from the unrealistic categorical assump-

tions of much of formal linguistic theory (and earlier

computational linguistics)
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Why probabilistic linguistics?

� Categorical grammars aren’t predictive: their notions

of grammaticality and ambiguity do not accord with

human perceptions

� They don’t tell us what “sounds natural”

� Grammatical but unnatural e.g.: In addition to this,

she insisted that women were regarded as a differ-

ent existence from men unfairly.

� Need to account for variation of languages across

speech communities and across time

� People are creative: they bend language ‘rules’ as

needed to achieve their novel communication needs

� Consequently “All grammars leak” (Sapir 1921:39)
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Psycholinguistics in one slide

� Humans rapidly and incrementally accumulate and

integrate information from world and discourse con-

text and the current utterance so as to interpret what

someone is saying in real time. Often commit early.

� They can often finish each other’s sentences!

� If a human starts hearing Pick up the yellow plate and

there is only one yellow item around, they’ll already

have locked on to it before the word yellow is finished

� Our NLP models don’t incorporate context into recog-

nition like this, or disambiguate without having heard

whole words (and often following context as well)
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StatNLP: Relation to wider context

� Matches move from logic-based AI to probabilistic AI

� Knowledge → probability distributions

� Inference → conditional distributions

� Probabilities give opportunity to unify reasoning, plan-

ning, and learning, with communication

� There is now widespread use of machine learning

(ML) methods in NLP (perhaps even overuse?)

� Now, an emphasis on empirical validation and the use

of approximation for hard problems
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Speech and NLP: A probabilistic view

� A acoustic signal � W words

� T syntactic (tree) structures � M meanings

� In spoken language use, we have a distribution:

P(A,W,T ,M)

� In written language, just: P(W,T ,M)
� Speech people have usually looked at: P(W |A) – the

rest of the hidden structure is ignored

� NLP people interested in the ‘more hidden’ structure

– T and often M – but sometimes W is observable

� E.g., there is much work looking at the parsing prob-

lem P(T |W). Language generation is P(W |M).
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Why is NLU difficult? The hidden structure of

language is hugely ambiguous

� Structures for: Fed raises interest rates 0.5% in effort

to control inflation (NYT headline 17 May 2000)
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Where are the ambiguities?

Part of speech ambiguities
Syntactic

VB attachment
VBZ VBP VBZ ambiguities

NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 % in effort

to control
inflation

Word sense ambiguities: Fed → “federal agent”
interest → a feeling of wanting to know or learn more

Semantic interpretation ambiguities above the word level
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The bad effects of V/N ambiguities (1)

S

NP

N

Fed

VP

V

raises

NP

N

interest

N

rates

12



The bad effects of V/N ambiguities (2)
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The bad effects of V/N ambiguities (3)
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Phrasal attachment ambiguities
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The many meanings of interest [n.]

� Readiness to give attention to or to learn about some-

thing

� Quality of causing attention to be given

� Activity, subject, etc., which one gives time and at-

tention to

� The advantage, advancement or favor of an individual

or group

� A stake or share (in a company, business, etc.)

� Money paid regularly for the use of money

Converse: words or senses that mean (almost) the same:

image, likeness, portrait, facsimile, picture
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Hidden Markov Models – POS example

X1
〈s〉

X2
NNP

X3
VBZ

X4
NN

X5
NNS

〈s〉 Fed
rai-
ses

inte-
rest

rates

aij aij aij aij

bik bik bik bik bik

� Top row is unobserved states, interpreted as POS tags

� Bottom row is observed output observations
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Attachment ambiguities S
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Likelihood ratios for PP attachment

� Likely attachment chosen by a (log) likelihood ratio:

λ(v, n, p) = log2
P(Attach(p) = v|v,n)
P(Attach(p) = n|v,n)

= log2
P(VAp = 1|v)P(NAp = 0|v)

P(NAp = 1|n)
If (large) positive, decide verb attachment [e.g., be-

low]; if (large) negative, decide noun attachment.

� Moscow sent more than 100,000 soldiers into Afghanistan

λ(send , soldiers , into) ≈ log2
0.049× 0.9993

0.0007
≈ 6.13

Attachment to verb is about 70 times more likely.
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(Multinomial) Naive Bayes classifiers for WSD

� ~x is the context (something like a 100 word window)

� ck is a sense of the word to be disambiguated

Choose c′ = arg max
ck

P(ck|~x)

= arg max
ck

P(~x|ck)
P(~x)

P(ck)

= arg max
ck

[logP(~x|ck)+ logP(ck)]

= arg max
ck

[
∑

vj in ~x
logP(vj|ck)+ logP(ck)]

� An effective method in practice, but also an example

of a structure-blind ‘bag of words’ model
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Statistical Computational Linguistic Methods

� Many (related) techniques are used:

� n-grams, history-based models, decision trees /

decision lists, memory-based learning, loglinear

models, HMMs, neural networks, vector spaces,

graphical models, decomposable models, PCFGs,

Probabilistic LSI, . . .

� Predictive and robust

� Good for learning (well, supervised learning works

well; unsupervised learning is still hard)

� The list looks pretty similar to speech work . . .

because we copied from them
21



NLP as a classification problem

� Central to recent advances in NLP has been reconcep-

tualizing NLP as a statistical classification problem

� We – preferably someone else – hand-annotate data,

and then learn using standard ML methods

� Annotated data items are feature vectors ~xi with a

classification ci.
� Our job is to assign an unannotated data item ~x to

one of the classes ck (or possibly to the doubt D or

outlier O categories, though in practice rarely used).
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Simple Bayesian Inference for NLP

� Central conception in early work: The “noisy chan-

nel” model. We want to determine English text given

acoustic signal, OCRed text, French text, . . .

Generator
p(i)

Noisy
Channel
p(o|i)

Decoder
I O Î

words speech words
POS tags words POS tags
L1 words L2 words L1 words

� ı̂ = arg maxi P(i|o) = arg maxi P(i)× P(o|i)
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Probabilistic inference in more generality

� Overall there is a joint distribution of all the variables

� e.g., P(s, t,m, d)
� We assume a generative or causal model that factor-

izes the joint distribution:

� e.g., P(t)P(s|t)P(m|t)P(d|m)
� This allows the distribution to be represented com-

pactly

� Some items in this distribution are observed

� We do inference to find other parts:

� P(Hidden|Obs = o1)

24



Machine Learning for NLP

Method \ Problem POS tagging WSD Parsing
Naive Bayes Gale et al. (1992)
(H)MM Charniak et al. (1993)
Decision Trees Schmid (1994) Mooney (1996) Magerman (1995)

Ringuette (1994)
Decision List/TBL Brill (1995) Brill (1993)
kNN/MBL Daelemans et al. (1996) Ng and Zavrel et al. (1997)

Lee (1996)
Maximum entropy Ratnaparkhi (1996) Ratnaparkhi

et al. (1994)
Neural networks Benello et al. (1989) Henderson and

Lane (1998)
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Distinctiveness of NLP as an ML problem

� Language allows the complex compositional encod-

ing of thoughts, ideas, feelings, . . . , intelligence.

� We are minimally dealing with hierarchical structures

(branching processes), and often want to allow more

complex forms of information sharing (dependencies).

� Enormous problems with data sparseness

� Both features and assigned classes regularly involve

multinomial distributions over huge numbers of val-

ues (often in the tens of thousands)

� Generally dealing with discrete distributions though!

� The distributions are very uneven, and have fat tails
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The obligatory Zipf’s law slide:

Zipf’s law for the Brown corpus

• • •
• •

• •
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Simple linear models of language

� Markov models a.k.a. n-gram models:

W1
〈s〉

W2
In

W3
both

W4
??

aij aij aij

� Word sequence is predicted via a conditional dis-

tribution

� Conditional Probability Table (CPT): e.g., P(X|both)
ñ P(of |both) = 0.066 P(to|both) = 0.041

� Amazingly successful as a simple engineering model

� Hidden Markov Models (above, for POS tagging)

� Linear models panned by Chomsky (1957)
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Why we need recursive structure

� The velocity of the seismic waves rises to . . .

S

NPsg

DT

The

NN

velocity

PP

IN

of

NPpl

the seismic waves

VPsg

rises to . . .

� Or you can use dependency grammar representations

– isomorphisms exist. (Ditto link grammar.)
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Probabilistic context-free grammars (PCFGs)

A PCFG G consists of:

� A set of terminals, {wk}
� A set of nonterminals, {Ni}, with a start symbol, N1

� A set of rules, {Ni → ζj}, (where ζj is a sequence of

terminals and nonterminals)

� A set of probabilities on rules such that:

∀i
∑
j P(N

i → ζj) = 1

� A generalization of HMMs to tree structures

� A similar algorithm to the Viterbi algorithm is used

for finding the most probable parse
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Expectation Maximization (EM) algorithm

� For both HMMs and PCFGs, we can use EM estimation

to learn the ‘hidden’ structure from plain text data

� We start with initial probability estimates

� E-step: We work out the expectation of the hidden

variables, given the current parameters for the model

� M-step: (Assuming these are right), we calculate the

maximum likelihood estimates for the parameters

� Repeat until convergence. . . (Dempster et al. 1977)

� It’s an iterative hill-climbing algorithm that can get

stuck in local maxima

� Frequently not effective if we wish to imbue the hid-

den states with meanings the algorithm doesn’t know
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Modern Statistical Parsers

� A greatly increased ability to do accurate, robust, broad

coverage parsing (Charniak 1997, Collins 1997, Rat-

naparkhi 1997, Charniak 2000)

� Achieved by converting parsing into a classification

task and using statistical/machine learning methods

� Statistical methods (fairly) accurately resolve struc-

tural and real world ambiguities

� Much faster: rather than being cubic in the sentence

length or worse, for modern statistical parsers pars-

ing time is made linear (by using beam search)

� Provide probabilistic language models that can be in-

tegrated with speech recognition systems.
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Parsing as classification decisions

E.g., Charniak (1997)

� A very simple, conservative model of lexicalized PCFG

Srose

NPprofits

JJcorporate

corporate

NNSprofits

profits

VProse

Vrose

rose

� Probabilistic conditioning is “top-down” (but actual

computation is bottom-up)
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Charniak (1997) example

Srose

NP VProse

A. h = profits; c = NP

B. ph = rose; pc = S

C. P(h|ph, c, pc)
D. P(r |h, c, pc)

Srose

NPprofits VProse

Srose

NPprofits

JJ NNSprofits

VProse
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Charniak (1997) linear interpolation/shrinkage

P̂ (h|ph, c, pc) = λ1(e)PMLE(h|ph, c, pc)
+λ2(e)PMLE(h|C(ph), c, pc)
+λ3(e)PMLE(h|c, pc)+ λ4(e)PMLE(h|c)

� λi(e) is here a function of how much one would ex-

pect to see a certain occurrence, given the amount of

training data, word counts, etc.

� C(ph) is semantic class of parent headword

� Techniques like these for dealing with data sparse-

ness are vital to successful model construction
35



Charniak (1997) shrinkage example

P(prft|rose,NP, S) P(corp|prft, JJ,NP)
P(h|ph, c, pc) 0 0.245
P(h|C(ph), c, pc) 0.00352 0.0150
P(h|c, pc) 0.000627 0.00533
P(h|c) 0.000557 0.00418

� Allows utilization of rich highly conditioned estimates,

but smoothes when sufficient data is unavailable

� One can’t just use MLEs: one commonly sees previ-

ously unseen events, which would have probability

0.
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Unifying different approaches

� Most StatNLP work is using loglinear/exponential mod-

els

� For discrete distributions – common in NLP! – we can

build a contingency table model of the joint distribu-

tion of the data.

� Example contingency table: predicting POS JJ

(N = 150)
f1

+hyphen −hyphen
f2 + -al Y: 8 N: 2 Y: 18 N: 27 Y: 26 N: 29

− -al Y: 10 N: 20 Y: 3 N: 62 Y: 13 N: 82

Y: 18 N: 22 Y: 21 N: 89 Y: 39 N: 111
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Loglinear/exponential (“maxent”) models

� Most common modeling choice is a loglinear model:

logP(X1 = x1, . . . , Xp = xp) =
∑
C λC(xC)

where C ⊂ {1, . . . , p}.
� Maximum entropy loglinear models

p(~x, c) = 1
Z

∏K
i=1

αfi(~x,c)i

K is the number of features, αi is the weight for

feature fi and Z is a normalizing constant. Log form:

log p(~x, c) = − logZ +
∑K
i=1

fi(~x, c)× logαi

� Generalized iterative scaling gives unique ML solution
38



The standard models are loglinear

� All the widely used generative probability models in

StatNLP are loglinear, because they’re done as a prod-

uct of probabilities decomposed by the chain rule

(Naive Bayes, HMMs, PCFGs, decomposable models,

Charniak (1997), Collins (1997) . . . )

� The simpler ones (Naive Bayes, HMMs, . . . ) can also

easily be interpreted as Bayes Nets/“graphical mod-

els” (Pearl 1988), as in the pictures earlier
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Beyond augmented PCFGs

� For branching process models, relative frequency prob-

ability estimates give ML estimates on observed data

� But because of the rich feature dependencies in lan-

guage, linguists like to use richer constraint models:

� S

NP

PRP

She[3sg.fem]

VP

VBZ

has [VP[SU: 3sg, VBN]]

VP

VBN

hurt [SU: NP, OB: NP]

NP

PRP

herself[refl 3sg.fem]

� Abney (1997) and Johnson et al. (1999) develop log-

linear Markov Random Field/Gibbs models
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But the whole NLP world isn’t loglinear

� Other methods, e.g., non-parametric instance-based

learning methods are also used

� The Memory-Based Learning approach (Daelemans

et al. 1996) has achieved good results for many

NLP problems

� Also quantitative but non-probabilistic methods, such

as vector spaces

� Latent semantic indexing via singular value decompo-

sition is often effective for dimensionality reduction

and unsupervised clustering

� E.g., Schütze (1997) for learning parts of speech,

word clusters, and word sense clusters
41



What we don’t know how to do yet:

Where are we at on meaning?

Scale
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Language
Understanding
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Story

Understanding

IRText
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Anaphora
Resolution
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Miller et al. (1996) [BBN]

� System over ATIS air travel domain

� Discourse-embedded meaning processing:

� U: I want to fly from Boston to Denver

� S: OK 〈flights are displayed〉
� U: Which flights are available on Tuesday

� [interpret as flights from Boston to Denver]

� S: 〈displays appropriate flights〉
� End-to-end statistical model from words to discourse-

embedded meaning: cross-sentence discourse model.
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Miller et al. (1996) [BBN]

� Three stage n-best pipeline:

� Pragmatic interpetation D from wordsW and discourse

history H via sentence meaning M and parse tree T

D̂ = arg max
D

P(D|W,H)

= arg max
D

∑

M,T
P(D|W,H,M,T)P(M,T |W,H)

= arg max
D

∑

M,T
P(D|H,M)P(M,T |W)

� Possible because of annotated language resources that

allow supervised ML at all stages (and a rather simple

slot-filler meaning representation)
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From structure to meaning

� Syntactic structures aren’t meanings, but having heads

and dependents essentially gives one relations:

� orders(president, review(spectrum(wireless)))

� We don’t yet resolve (noun phrase) scope, but that’s

probably too hard for robust broad-coverage NLP

� Main remaining problems: synonymy and polysemy:

� Words have multiple meanings

� Several words can mean the same thing

� But there are well-performing methods of also statis-

tically disambiguating and clustering words as well

� So the goal of transforming a text into meaning rela-

tions or “facts” is close 45



Integrating probabilistic reasoning about con-

text with probabilistic language processing

� Paek and Horvitz (2000) treats conversation as infer-

ence and decision making under uncertainty

� Quartet: A framework for spoken dialog which mod-

els and exploits uncertainty in:

� conversational control � intentions

� maintenance (notices lack of understanding, etc.)

� Attempts to model the development of mutual under-

standing in a dialog

� But language model is very simple

� Much more to do in incorporating knowledge into

NLP models 46



Learning and transfering knowledge

� We can do well iff we can train our models on super-

vised data from the same domain

� We have adequate data for very few domains/genres

� In general, there have been modest to poor results in

learning rich NLP models from unannotated data

� It is underexplored how one can adapt or bootstrap

with knowledge from one domain to another where

data is more limited or only available unannotated

� Perhaps we need to more intelligently design models

that use less parameters (but the right conditioning)?

� These are vital questions for making StatNLP interest-

ing to cognitive science
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Sometimes an approach where probabilities

annotate a symbolic grammar isn’t sufficient

� There’s lots of evidence that our representations should

also be squishy. E.g.:

� What part of speech do “marginal prepositions”

have? concerning, supposing, considering, regard-

ing, following

� Transitive verb case: Asia’s other cash-rich coun-

tries are following Japan’s lead.

� Marginal preposition (VP modifier, sense of after):

U.S. chip makers are facing continued slack de-

mand following a traditionally slow summer.

� Penn Treebank tries to mandate that they are verbs
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� But some have already moved to become only prepo-

sitions: during (originally a verb, cf. endure) and

notwithstanding (a compound from a verb)

� And others seem well on their way:

� According to this, industrial production declined

� They’re in between being verbs and prepositions

� Conversely standard probabilistic models don’t ex-

plain why language is ‘almost categorical’: categori-

cal grammars have been used for thousands of years

because they just about work. . . .

� In many places there is a very steep drop-off between

‘grammatical’ and ‘ungrammatical’ strings that our

probabilistic models often don’t model well
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Envoi

� Statistical methods have brought a new level of per-

formance in robust, accurate, broad-coverage NLP

� They provide a fair degree of disambiguation and in-

terpretation, integrable with other systems

� To avoid plateauing, we need to keep developing richer

and more satisfactory representational models

� The time seems ripe to combine sophisticated yet

robust NLP models (which do more with meaning)

with richer probabilistic contextual models

Thanks for listening!
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