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Machine Comprehension
Tested by question answering (Burges)

“A	machine	comprehends a	passage	of	text if,	for	any	
question regarding	that	text	that	can	be	answered
correctly	by	a	majority	of	native	speakers,	that	machine	
can	provide	a	string	which	those	speakers	would	agree	
both	answers	that	question,	and	does	not	contain	
information	irrelevant	to	that	question.”



IR needs language understanding

• There	were	some	things	that	kept	IR	and	NLP	apart
• IR	was	heavily	focused	on	efficiency	and	scale
• NLP	was	way	too	focused	on	form	rather	than	meaning

• Now	there	are	compelling	reasons	for	them	to	come	together
• Taking	IR	precision	and	recall	to	the	next	level
• [car	parts	 for	sale]
• Should	match:	Selling	automobile	and	pickup	engines,	 transmissions

• Example	 from	Jeff	Dean’s	WSDM	2016	talk

• Information	retrieval/question	answering	in	mobile	contexts
• Web	snippets	no	longer	cut	it	on	a	watch!



Menu

1. Natural	logic:	A	weak	logic	over	human	languages	for	inference

2. Distributed	word	representations

3. Deep,	recursive	neural	network	language	understanding



How can information retrieval 
be viewed more as theorem 
proving (than matching)?



AI2 4th Grade Science Question 
Answering   [Angeli, Nayak, & Manning, ACL 2016]

Our	“knowledge”:

Ovaries	are	the	female	part	of	the	flower,	which	
produces	eggs	that	are	needed	for	making	seeds.	

The	question:

Which	part	of	a	plant	produces	the	seeds?	

The	answer	choices:

the	flower							the	leaves							the	stem							the	roots



How can we represent and reason with 
broad-coverage knowledge?

1. Rigid-schema	knowledge	
bases	with	well-defined	
logical	inference

2. Open-domain	knowledge	
bases	(Open	IE)	– no	clear	
ontology	or	inference
[Etzioni	et	al.	2007ff]

3. Human	language	text	KB	–
No	rigid	schema,	but	with	
“Natural	logic”	can	do	
formal	inference	over	
human	language	text [MacCartney	and	Manning	2008]



Natural Language Inference
[Dagan 2005, MacCartney & Manning, 2009]

Does	a	piece	of	text	follows	from	or	contradict	another?
Two	senators	received	contributions	engineered
by	lobbyist	Jack	Abramoff	in	return	for	political	favors.

Jack	Abramoff	attempted	to	bribe	two	legislators.

Here	try	to	prove	or	refute	according	to	a	large	text	collection:
1. The	flower	of	a	plant	produces	the	seeds
2. The	leaves	of	a	plant	produces	the	seeds
3. The	stem	of	a	plant	produces	the	seeds
4. The	roots	of	a	plant	produces	the	seeds

Follows



Text as Knowledge Base

Storing	knowledge	as	text	is	easy!

Doing	inferences	over	text	might	be	hard

Don’t	want	to	run	
inference	over	every	fact!

Don’t	want	to	store	
all	the	inferences!



Inferences … on demand from a 
query … [Angeli and Manning 2014]



… using text as the meaning
representation



Natural Logic: logical inference 
over text

We	are	doing	logical	inference
The	cat	ate	a	mouse	⊨ ¬	No	carnivores	eat	animals

We	do	it	with	natural	logic
If	I	mutate	a	sentence	in	this	way,	do	I	preserve	its	truth?
Post-Deal	Iran	Asks	if	U.S.	 Is	Still	‘Great	Satan,’	or	Something	Less ⊨
A	Country	Asks	if	U.S.	 Is	Still	‘Great	Satan,’	or	Something	Less

• A	sound	and	complete	weak	logic	[Icard and	Moss	2014]
• Expressive	for	common	human	inferences*
• “Semantic”	parsing	is	just	syntactic	parsing
• Tractable:	Polynomial	time	entailment	checking
• Plays	nicely	with	lexical	matching	back-off	methods



#1. Common sense reasoning

Polarity	in	Natural	Logic

We	order	phrases	in	partial	orders
Simplest	one:	is-a-kind-of
Also:	geographical	containment,	etc.

Polarity:	In	a	certain	context,	is	it	valid	
to	move	up	or	down	in	this	order?



Example inferences

Quantifiers	determine	the	polarity of	phrases

Valid	mutations	consider polarity

Successful	toy	inference:	
• All	cats	eat	mice ⊨ All	house	cats	consume	rodents



“Soft” Natural Logic

• We	also	want	to	make	likely	(but	not	certain)	inferences
• Same	motivation	as	Markov	logic,	probabilistic	soft	logic,	

etc.
• Each	mutation	edge	template	feature	has	a	cost	θ ≥	0
• Cost	of	an	edge	is	θi ·	fi
• Cost	of	a	path	is	θ ·	f
• Can	learn	parameters	θ
• Inference	is	then	graph	search



#2. Dealing with real sentences

Natural	logic	works	with	facts	like	these	in	the	knowledge	base:
Obama	was	born	in	Hawaii

But	real-world	sentences	are	complex	and	long:
Born	in	Honolulu,	Hawaii,	Obama is	a	graduate	of	Columbia	
University	and	Harvard	Law	School,	where	he	served	as	
president	of	the	Harvard	Law	Review.

Approach:
1. Classifier	divides	long	sentences	into	entailed	clauses	
2. Natural	logic	inference	can	shorten	these	clauses



Universal Dependencies (UD)
http://universaldependencies.github.io/docs/

A	single	level	of	typed	dependency	syntax	that	
(i) works	for	all	human	languages
(ii) gives	a	simple,	human-friendly	representation	of	sentence

Dependency	syntax	is	better	than	a	phrase-structure	tree	for	
machine	interpretation	– it’s	almost	a	semantic	network

UD	aims	to	be	linguistically	better	across	languages	than	
earlier	representations,	such	as	CoNLL	dependencies



Generation of minimal clauses

1. Classification	problem:	
given	a	dependency	edge,	
does	it	introduce	a	clause?

2. Is	it	missing	a	controlled	
subject	from	subj/object?

3. Shorten	clauses	while	
preserving	validity,	using	
natural	logic!
• All	young	rabbitsdrink	milk

⊭ All	rabbitsdrink	milk

• OK: SJC,	the	Bay	Area’s	
third	largest	airport,	often
experiences delays	due	to	
weather.

• Often	better:	SJC	often	
experiences	delays.



#3. Add a lexical alignment classifier

• Sometimes	we	can’t	quite	make	the	inferences	that	we	would	
like	to	make:

• We	use	a	simple	lexical	match	back-off	classifier	with	features:
• Matching	words,	mismatched	words,	unmatched	words
• These	always	work	pretty	well
• This	was	the lesson	of	RTE	evaluations	 and	perhaps	 or	IR	in	general



The full system

• We	run	our	usual	search	over	split	up,	shortened	clauses
• If	we	find	a	premise,	great!
• If	not,	we	use	the	lexical	classifier	as	an	evaluation	function

• We	work	to	do	this	quickly	at	scale
• Visit	1M	nodes/second,	 don’t	refeaturize,	 just	delta
• 32	byte	search	states	 (thanks	Gabor!)



Solving NY State 4th grade science 
(Allen AI Institute datasets)

Multiple	choice	questions	from	real	4th grade	science	exams	
Which	activity	is	an	example	of	a	good	health	habit?	

(A)	Watching	television	(B)	Smoking	cigarettes	(C)	Eating	candy
(D)	Exercising	every	day	

In	our	corpus knowledge	base:	
• Plasma	TV’s	can	display	up	to	16	million	colors	...	great	for	

watching	TV	...	also	make	a	good	screen.
• Not	smoking	or	drinking	alcohol	is	good	for	health,	regardless	of	

whether	clothing	is	worn	or	not.
• Eating	candy	for	diner	is	an	example	of	a	poor	health	habit.
• Healthy	is	exercising	



Solving 4th grade science 
(Allen AI NDMC)

System Dev Test
KnowBot		[Hixon et	al.	NAACL	2015] 45 –
KnowBot	(augmentedwith human	in	loop) 57 –
IR	baseline	(Lucene) 49 42
NaturalLI 52 51
More	data	+	IR	baseline 62 58
More	data	+	NaturalLI 65 61
NaturalLI	+	🔔 +									(lex.	classifier) 74 67
Aristo	[Clark	et	al.	2016]	6	systems,	even	more	data 71

Test	set:	New	York	Regents	4th	Grade	Science	exam	multiple-choice	 questions	from	AI2	
Training:	Basic	is	Barron’s	study	guide;	more	data	is	SciText corpus	from	AI2.	Score:	%	correct	



Natural Logic

• Can	we	just	use	text	as	a	knowledge	base?
• Natural	logic	provides	a	useful,	formal	(weak)	logic	for	textual	

inference
• Natural	logic	is	easily	combinable	with	lexical	matching	

methods,	including	neural	net	methods
• The	resulting	system	is	useful	for:
• Common-sense	reasoning
• Question	Answering
• Open	Information	Extraction
• i.e.,	getting	out	relation	 triples	 from	text



Can information retrieval 
benefit from distributed 
representations of words? 



From symbolic to distributed 
representations

The	vast	majority	of	rule-based	or	statistical	NLP	and IR work	
regarded	words	as	atomic	symbols:	hotel, conference,
walk

In	vector	space	terms,	this	is	a	vector	with	one	1	and	a	lot	of	
zeroes

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

We	now	call	this	a	“one-hot”	representation.

Sec. 9.2.2



From symbolic to distributed 
representations

Its	problem:
• If	user	searches	for	[Dell	notebook	battery	size],	we	would	
like	to	match	documents	with	“Dell	laptop	battery	capacity”

• If	user	searches	for	[Seattle	motel],	we	would	like	to	match	
documents	containing	“Seattle	hotel”

But
motel [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]T

hotel  [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] = 0
Our	query	and	document	vectors	are	orthogonal
There	is	no	natural	notion	of	similarity	in	a	set	of	one-hot	vectors

Sec. 9.2.2



Capturing similarity

There	are	many	things	you	can	do	about	similarity,	many	
well	known	in	IR

Query	expansion	with	synonym	dictionaries

Learning	word	similarities	from	large	corpora

But	a	word	representation	that	encodes	similarity	wins
Less	parameters	to	learn	(per	word,	not	per	pair)

More	sharing	of	statistics

More	opportunities	for	multi-task	learning



Distributional similarity-based 
representations

You	can	get	a	lot	of	value	by	representing	a	word	by	
means	of	its	neighbors

“You	shall	know	a	word	by	the	company	it	keeps”
(J.	R.	Firth	1957:	11)

One	of	the	most	successful	ideas	of	modern	NLP
government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

ë These	words	will	represent	banking	ì



Basic idea of learning neural network 
word embeddings

We	define	some	model	that	aims	to	predict	a	word	based	
on	other	words	in	its	context

Choose	argmaxw w·((wj−1 +	wj+1)/2)

which	has	a	loss	function,	e.g.,

J =	1	−	wj·((wj−1 +	wj+1)/2)

We	look	at	many	samples	from	a	big	language	corpus

We	keep	adjusting	the	vector	representations	of	words	
to	minimize	this	loss

Unit	norm	
vectors



With distributed, distributional representations, 
syntactic and semantic similarity is captured

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271

currency =



Distributional representations can 
solve the fragility of NLP tools

Standard	NLP	systems	– here,	the	Stanford	Parser	– are	
incredibly	fragile	because	of		symbolic	representations

Crazy	sentential	
complement,	 such	as	for	
“likes	 [(being)	crazy]”



Distributional representations can 
capture the long tail of IR similarity

Google’s	RankBrain

Not	necessarily	as	good	for	the	head	of	the	query	
distribution,	but	great	for	seeing	similarity	in	the	tail

3rd most	important	ranking	signal	(we’re	told…)



LSA:	Count!	models
• Factorize	a	(maybe	weighted,	often	log-scaled)	term-

document	(Deerwester et	al.	1990)	or	word-context	matrix	
(Schütze	1992)	into	UΣVT

• Retain	only	k	singular	values,	in	order	to	generalize

[Cf.	Baroni:	Don’t	count,	predict!	A	systematic	comparison	of	context-
counting	vs.	context-predicting	 semantic	vectors.	 ACL	2014]

LSA (Latent Semantic Analysis) vs. 
word2vec

k

Sec. 18.3



word2vec	CBOW/SkipGram:	Predict!
[Mikolov et	al.	2013]:	Simple	predict	
models	for	learning	word	vectors
• Train	word	vectors	to	try	to	either:

• Predict	a	word	given	its	bag-of-
words	context	(CBOW);	or	

• Predict	a	context	word	(position-
independent)	from	the	center	
word

• Update	word	vectors	until	they	can	
do	this	prediction	well

LSA vs. word2vec

Sec. 18.3



word2vec encodes semantic 
components as linear relations



COALS model (count-modified LSA)
[Rohde, Gonnerman & Plaut, ms., 2005]



Count based vs. direct prediction

LSA, HAL (Lund & Burgess), 
COALS (Rohde et al), 
Hellinger-PCA (Lebret & Collobert)

• Fast training
• Efficient usage of statistics

• Primarily used to capture 
word similarity

• May not use the best 
methods for scaling counts

• NNLM, HLBL, RNN, word2vec 
Skip-gram/CBOW, (Bengio et al; 
Collobert & Weston; Huang et al; Mnih & 
Hinton; Mikolov et al; Mnih & Kavukcuoglu)

• Scales with corpus size

• Inefficient usage of statistics

• Can capture complex patterns 
beyond word similarity 

• Generate improved performance 
on other tasks



Ratios	of	co-occurrence	probabilities	can	encode	
meaning	components

Crucial	insight:	

x =	solid x =	water			

large

x =	gas

small

x =	random			

smalllarge

small large large small

~1 ~1large small

Encoding meaning in vector differences
[Pennington, Socher, and Manning, EMNLP 2014]



Ratios	of	co-occurrence	probabilities	can	encode	
meaning	components

Crucial	insight:	

x =	solid x =	water			

1.9	x	10-4

x =	gas x =	fashion

2.2	x	10-5

1.36 0.96

Encoding meaning in vector differences
[Pennington, Socher, and Manning, EMNLP 2014]

8.9

7.8	x	10-4 2.2	x	10-3

3.0	x	10-3 1.7	x	10-5

1.8	x	10-5

6.6	x	10-5

8.5	x	10-2



A:	Log-bilinear	model:

with	vector	differences

Encoding meaning in vector differences

Q:	How	can	we	capture	ratios	of	co-occurrence	probabilities	as	
meaning	components	in	a	word	vector	space?



Nearest	words	to frog:

1.	frogs
2.	toad
3.	litoria
4.	leptodactylidae
5.	rana
6.	lizard
7.	eleutherodactylus

Glove Word similarities
[Pennington et al., EMNLP 2014]

litoria leptodactylidae

rana eleutherodactylus
http://nlp.stanford.edu/projects/glove/



Glove Visualizations

http://nlp.stanford.edu/projects/glove/



Glove Visualizations: Company - CEO



Named Entity Recognition Performance

Model	on	CoNLL CoNLL ’03	dev CoNLL ’03	test ACE	2 MUC	7
Categorical	CRF 91.0 85.4 77.4 73.4
SVD	(log	tf) 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
C&W 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

F1	score	of	CRF	trained	on	CoNLL	2003	English	with	50	dim	word	vectors



Word embeddings: Conclusion

Glove	translates	meaningful	relationships	between	word-word	co-
occurrence	counts into linear	relations in	the	word	vector	space

Glove	shows	the	connection	between	Count!work	and	Predict!
work	– appropriate	scaling	of	counts	gives	the	properties	and	
performance	of	Predict!Models

A	lot	of	other	important	work	in	this	line	of	research:
[Levy	&	Goldberg,	2014]	
[Arora,	Li,	Liang,	Ma	&	Risteski,	2015]
[Hashimoto,	Alvarez-Melis &	Jaakkola,	2016]



Can we use neural networks to 
understand, not just word similarities, 

but language meaning in general? 



Compositionality
Artificial Intelligence requires being able 
to understand bigger things from knowing 

about smaller parts



We need more than word embeddings! 

How	can	we	know	when	larger	linguistic	units	are	
similar	in	meaning?

The	snowboarder	is	leaping	over	the	mogul

A	person	on	a	snowboard	jumps	into	the	air

People	interpret	the	meaning	of	larger	text	units	–
entities,	descriptive	terms,	facts,	arguments,	stories	– by	
semantic	composition of	smaller	elements



Beyond the bag of words: Sentiment 
detection

Is	the	tone	of	a	piece	of	text	positive,	negative,	or	neutral?

• Sentiment	is	that	sentiment	is	“easy”
• Detection	accuracy	for	longer	documents	~90%,	BUT

…	…	loved	…	…	…	…	…	great	…	…	…	…	…	…	impressed	
…	…	…	…	…	…	marvelous	…	…	…	…



Stanford Sentiment Treebank

• 215,154	phrases	labeled	in	11,855	sentences
• Can	train	and	test	compositions

http://nlp.stanford.edu:8080/sentiment/



Tree-Structured Long Short-Term 
Memory Networks      [Tai et al., ACL 2015]



Tree-structured LSTM

Generalizes	sequential	LSTM	to	trees	with	any	branching	factor



Positive/Negative Results on Treebank

75

80

85

90

95

Training	with	Sentence	 Labels Training	with	Treebank

Bi	NB

RNN

MV-RNN

RNTN

TreeLSTM



Experimental Results on Treebank

• TreeRNN can	capture	constructions	like	X	but	Y
• Biword Naïve	Bayes	is	only	58%	on	these



Stanford Natural Language Inference 
Corpus       http://nlp.stanford.edu/projects/snli/
570K Turker-judged pairs, based on an assumed picture

A	man	rides	a	bike	on a	snow	covered	road.
A	man is	outside. ENTAILMENT

2	female	babies	eating	chips.
Two	female	babies	are	enjoying	chips.
NEUTRAL

A	man	in	an	apron	shopping	at	a	market.
A	man	in	an	apron	is	preparing	dinner.
CONTRADICTION



NLI with Tree-RNNs
[Bowman, Angeli, Potts & Manning, EMNLP 2015]

Approach: We	would	like	to	work	out	the	meaning	of	
each	sentence	separately	– a	pure	compositional	model

Then	we	compare	them	with	NN	&	classify	for	inference

P(Entail)	=	0.8

man	outside	 vs. man	in	snow

snowin

in	snowman

man	in	snow

outsideman

man	outside

Softmax classifier

Comparison	NN	layer(s)

Composition	 NN layer

Learned	word	vectors



Tree recursive NNs (TreeRNNs)

Theoretically	appealing

Very	empirically	competitive

But

Prohibitively	slow

Usually	require	an	external	
parser

Don’t	exploit	complementary	
linear	structure	of	language



A recurrent NN allows efficient 
batched computation on GPUs



TreeRNN: Input-specific structure 
undermines batched computation



The Shift-reduce Parser-Interpreter NN 
(SPINN) [Bowman, Gauthier et al. 2016]

Base	model	equivalent	to	a	TreeRNN,	but	…	
supports	batched	computation:	25× speedups

Plus:
Effective	new	hybrid	that	combines	linear	and	tree-structured	
context

Can	stand	alone	without	a	parser



Beginning observation: 
binary trees = transition sequences

SHIFT SHIFT
REDUCE SHIFT
SHIFT REDUCE

REDUCE

SHIFT SHIFT
SHIFT SHIFT
REDUCE REDUCE 

REDUCE

SHIFT SHIFT
SHIFT REDUCE
SHIFT REDUCE 

REDUCE



The Shift-reduce Parser-Interpreter NN 
(SPINN)



The Shift-reduce Parser-Interpreter NN 
(SPINN)

The	model	includes	a	sequence	LSTM	RNN
• This	acts	as	a	simple	parser	by	predicting	SHIFT	or	REDUCE
• It	also	gives	left	sequence	context	as	input	to	composition



Implementing the stack

• Naïve	implementation:	simulates	stacks	in a	batch	with	a	fixed-
size	multidimensional	array at	each	timestep
• Backpropagation	requires	that	each	intermediate	stack	be	
maintained	in	memory

• ⇒ Large	amount	of	data	copying	and	movement	required
• Efficient	implementation

• Have	only	one	stack	array	for	each	example
• At	each	timestep,	augment	with	the	current	head	of	the	stack
• Keep	list	of	backpointers for	REDUCE	operations

• Similar	to	zipper	data	structures	employed	elsewhere



Array Backpointers

1

2

3

4

5

Spot 1

sat 1 2

down 1	2	3

(sat	down) 1	4

(Spot	(sat	down)) 5

A thinner stack





Using SPINN for natural language 
inference

o₁ o₂
the cat

sat down

the cat

is angry

(the cat) (sat down)

(the cat) (is angry)



SNLI Results

Model %	Accuracy	(Test	set)

Feature-based classifier 78.2
Previous	SOTA	sentence	encoder	
[Mou et	al.	2016]

82.1

LSTM	RNN	sequence	model 80.6
Tree LSTM 80.9
SPINN 83.2
SOTA	(sentence	pair	alignment	model)	
[Parikh	et	al.	2016]

86.8



Successes for SPINN over LSTM

Examples	with	negation
• P:	The	rhythmic	gymnast	completes	her	floor	exercise	at	the	
competition.

• H:	The	gymnast	cannot	finish	her	exercise.

Long	examples	(>	20	words)
• P:	A	man	wearing	glasses	and	a	ragged	costume	is	playing	a	
Jaguar	electric	guitar	and	singing	with	the	accompaniment	of	
a	drummer.

• H:	A	man	with	glasses	and	a	disheveled	outfit	is	playing	a	
guitar	and	singing	along	with	a	drummer.



Envoi

• There	are	very	good	reasons	for	wanting	to	represent	meaning	
with	distributed	representations

• So	far,	distributional	learning	has	been	most	effective	for	this
• But	cf.	[Young,	Lai,	Hodosh&	Hockenmaier 2014]	on	
denotational	representations,	using	visual	scenes

• However,	we	want	not	just	word	meanings,	but	also:
• Meanings	of	larger	units,	calculated	compositionally
• The	ability	to	do	natural	language	inference

• The	SPINN	model	is	fast	— close	to	recurrent	networks!
• Its	hybrid	sequence/tree	structure	is	psychologically	plausible	

and	out-performs	other	sentence	composition	methods



2011														2013										2015											2017
speech							vision						NLP										IR

Final Thoughts

You	are
here

IR NLP



Final Thoughts

I’m	certain	that	deep	 learning	will	come	to	dominate	SIGIR	over	 the	next	couple	
of	years	…	just	like	speech,	 vision,	and	NLP	before	 it.	This	is	a	good	thing.	Deep	
learning	provides	some	powerful	new	techniques	 that	are	just	being	amazingly	
successful	 on	many	hard	applied	problems.	However,	 we	should	 realize	 that	
there	 is	also	currently	a	huge	amount	of	hype	about	deep	 learning	and	artificial	
intelligence.	We	should	not	let	a	genuine	enthusiasm	for	important	and	
successful	 new	techniques	 lead	to	irrational	exuberance	 or	a	diminished	
appreciation	 of	other	approaches.	 Finally,	despite	 the	efforts	 of	a	number	of	
people,	 in	practice	 there	has been	a	considerable	 division	between	 the	human	
language	 technology	fields	of	IR,	NLP,	and	speech.	Partly	this	is	due	to	
organizational	 factors	and	partly	that	at	one	time	the	subfields	each	had	a	very	
different	 focus.	However,	 recent	changes	 in	emphasis	– with	IR	people	wanting	
to	understand	 the	user	better	and	NLP	people	much	more	interested	 in	meaning	
and	context	– mean	that	there	are	a	lot	of	common	interests,	 and	I	would	
encourage	much	more	collaboration	between	 NLP	and	IR	in	the	next	decade.	


