Deep Learning for Language Understanding Step 1: Word Vectors

Christopher Manning

Stanford University @chrmanning & @stanfordnlp Harker Programming Invitational 2017

What is Machine Learning?

Machine learning is the approach where, instead of programming computers to follow instructions, we program them to learn to do things

However, most machine learning methods work well because of carefully **human-designed representations** and **input features**

 E.g., features for finding named entities like person or organization names

Machine learning becomes just optimizing weights to best make a final prediction

Previous word	at
Current word	Grace
Beginning bigram	<g< td=""></g<>
Prev and curr POS	IN NNP
Previous state	Other
Current signature	Xx
Prev state, cur sig	O-Xx
Prev-cur-next sig	x-Xx-Xx
P. state - p-cur sig	O-x-Xx

What is Deep Learning?

Representation learning is a subfield of machine learning, where we attempt to automatically learn the good features or representations

Deep learning algorithms do this by attempting to learn multiple levels of representation **h** and an output

From "raw" inputs **x** (e.g., sound, characters, or words)

What is a Neural Network?

(Artificial) Neural Networks work by using distributed representations of concepts as vectors of real numbers

They compute representations by matrix multiplies from one layer to another (followed by an element-wise rescaling)

What is Computational Linguistics/NLP?

Computational linguistics or natural language processing is a field at the intersection of

- artificial intelligence/computer science
- and linguistics (the science of human languages)

Goal: for computers to process or understand human languages in order to perform tasks that are useful, e.g.,

- An agent that can make appointments or order things
- Question answering
- Machine translation

E.g., Siri, Google Assistant, Cortana, ... thank you, mobile!!!

Commercial world

Deep Learning for Speech

The first breakthrough results of deep learning on a large dataset happened in speech recognition

 Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition (Dahl et al. 2010)

Acoustic model	Recog	RT03S	Hub5
	WER	FSH	SWB
Traditional GMM features	1-pass –adapt	27.4	23.6
Deep Learning	1-pass	18.5	16.1
	–adapt	(-33%)	(-32%)

Deep Learning for Computer Vision

The breakthrough DL paper: ImageNet Classification with **Deep Convolutional Neural** Networks by Krizhevsky, Sutskever, & Hinton, 2012, U. Toronto. 37% error red.

tabbv

Zeiler and Fergus (2013)

Egyptian cat

Persian cat Siamese cat

lvnx

Word vectors: From symbolic to distributed word représentations

The vast majority of rule-based and statistical natural language processing or web search work regarded words as atomic symbols: hotel, conference

In machine learning vector space terms, this is a vector with one 1 and a lot of zeroes

[00000000010000]

Deep learning people call this a "one-hot" representation

From symbolic to distributed word representations

Its problem, e.g., for web search:

- If user searches for [Dell notebook battery size], we would like to match documents with "Dell laptop battery capacity"
- If user searches for [Seattle motel], we would like to match documents containing "Seattle hotel"

But

Our query and document vectors are **orthogonal**

There is no natural notion of similarity in a set of one-hot vectors

A solution via distributional similarity-based representations

You can get a lot of value by representing a word by means of its neighbors

"You shall know a word by the company it keeps"

(J. R. Firth 1957: 11)

One of the most successful ideas of modern NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

▲ These words will represent banking

Word meaning as a vector

We build a dense vector for each word type, chosen so that it is good at predicting other words appearing in its context ... those other words also being represented by vectors

Basic idea of Learning neural network word embeddings

We define a model that aims to predict between a center word w_t and context words in terms of word vectors

 $p(context | w_t) = ...$

which has a loss function, e.g.,

 $J = 1 - p(w_{-t} | w_t)$

We look at many positions t in a big amount of text

We keep adjusting the vector representations of words to minimize this loss

Skip-gram prediction

Details of Word2Vec

Predict surrounding words in a window of radius *m* of every word

For $p(w_{t+j}|w_t)$ the simplest first formulation is

$$p(o|c) = \frac{\exp(u_{o}^{T}v_{c})}{\sum_{w=1}^{V}\exp(u_{w}^{T}v_{c})}$$

where o is the outside (or output) word index, c is the center word index, v_c and u_o are "center" and "outside" vectors of indices c and o

Softmax using word *c* to obtain probability of word *o*

Dot products Dot product $u^{T}v = u.v = \sum_{i=1}^{n} u_{i}v_{i}$ Bigger if u and v are more similar! Iterate over w=1...W: UNV means: Work out how similar each word is to v !

$$p(o|c) = \frac{\exp(u_{o}^{T} v_{c})}{\sum_{w=1}^{V} \exp(u_{w}^{T} v_{c})}$$

Softmax function: Standard map from \mathbb{R}^{\vee} to a probability distribution

Softmax

Exponentiate to make positive

Normalize to give probability

To learn good word vectors: Compute all vector gradients!

- We define the set of all parameters of the model in terms of one long vector θ [$v_{aardvark}$]
- In our case with d-dimensional vectors (perhaps d = 300), and V many words:
- We then want to "optimize" these parameters

Intuition of how to minimize loss for a simple function over two parameters

We start at a random point and walk in the steepest direction, which is given by the derivative of the function

Contour lines show points of equal value of objective function

Descending by using derivatives

We will minimize a cost function by gradient descent

Trivial example: (from Wikipedia) Find a local minimum of the function $f(x) = x^4 - 3x^3 + 2$, with derivative $f'(x) = 4x^3 - 9x^2$


```
x_old = 0
x_new = 6 # The algorithm starts at x=6
eps = 0.01 # step size
precision = 0.00001

def f_derivative(x):
   return 4 * x**3 - 9 * x**2

while abs(x_new - x_old) > precision:
   x_old = x_new
   x_new = x_old - eps * f_derivative(x_old)
```

print("Local minimum occurs at", x_new)

Subtracting a fraction of the gradient moves you towards the minimum!

Vanilla Gradient Descent Code

 $\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$

```
while True:
    theta_grad = evaluate_gradient(J,corpus,theta)
    theta = theta - alpha * theta_grad
```

Training/optimizing a neural network is really all the chain rule!

Chain rule! If y = f(u) and u = g(x), i.e. y = f(g(x)), then:

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \frac{df(u)}{du}\frac{dg(x)}{dx}$$

Simple example: $\frac{dy}{dx} = \frac{d}{dx}5(x^3+7)^4$

 $y = f(u) = 5u^4$ $u = g(x) = x^3 + 7$ $\frac{dy}{du} = 20u^3 \qquad \qquad \frac{du}{dx} = 3x^2$ $\frac{dy}{dx} = 20(x^3+7)^3 \cdot 3x^2$

Objective Function
Maximize
$$J'(\theta) = \prod_{t=1}^{T} \prod_{\substack{v \in I \\ v \neq v \in I}} p(w'_{t+j} | w_{t}; \theta)$$

 $\int_{i \neq 0}^{m_{t+j}} \log \left[J(\theta) = -\frac{1}{T} \sum_{\substack{v \in I \\ v \neq v \in I}} \log p(w'_{t+j} | w_{t}) \right]$
 $\int_{i \neq 0}^{m_{t+j}} \log p(w'_{t+j} | w_{t})$
 $\int_{i \neq 0}^{m_{t+j}} \log p(w'_{t+j} | w_{t+j})$
 $\int_{i \neq 0}^{m_{t+j}} \log p(w'_{t+$

$$\frac{\partial}{\partial v_{c}} \log \frac{\exp (u_{o}^{T}v_{c})}{\sum \exp (u_{w}v_{c})}$$

$$= \frac{\partial}{\partial v_{c}} \log \exp (u_{o}^{T}v_{c}) - \frac{\partial}{\partial v_{c}} \log \frac{\nabla \exp (u_{w}^{T}v_{c})}{2}$$

$$\frac{\partial}{\partial v_{c}} \log \exp (u_{o}^{T}v_{c}) = \frac{\partial}{\partial v_{c}} u_{o}^{T}v_{c} = u_{o}$$

$$\frac{\partial}{\partial v_{c}} \log \exp (u_{o}^{T}v_{c}) = \frac{\partial}{\partial v_{c}} u_{o}^{T}v_{c} = u_{o}$$

$$\frac{\partial}{\partial v_{c}} \log \exp (u_{o}^{T}v_{c}) = \frac{\partial}{\partial v_{c}} u_{o}^{T}v_{c} = u_{o}$$

$$\frac{\partial}{\partial v_{c}} \log \exp (u_{o}^{T}v_{c}) = \frac{\partial}{\partial v_{c}} u_{o}^{T}v_{c} = u_{o}$$

$$\frac{\partial}{\partial v_{c}} \log \exp (u_{o}^{T}v_{c}) = \frac{\partial}{\partial v_{c}} u_{o}^{T}v_{c} = u_{o}$$

$$\frac{\partial}{\partial v_{c}} \log \exp (u_{o}^{T}v_{c}) = \frac{\partial}{\partial v_{c}} u_{o}^{T}v_{c} = u_{o}$$

$$\frac{\partial}{\partial v_{c}} \log \exp (u_{o}^{T}v_{c}) = \frac{\partial}{\partial v_{c}} u_{o}^{T}v_{c} = \frac{\partial}{\partial v_{c}} \sum_{i=1}^{d} (u_{o})_{i} (v_{c})_{i}$$

$$\frac{\partial}{\partial v_{c}} \log u_{o}^{T}v_{c} = \frac{\partial}{\partial v_{c}} \sum_{i=1}^{d} (u_{o})_{i} (v_{c})_{i}$$

$$\frac{\partial}{\partial v_{c}} \log u_{o}^{T}v_{c} = \frac{\partial}{\partial v_{c}} \sum_{i=1}^{d} (u_{o})_{i} (v_{c})_{i}$$

$$\frac{\partial}{\partial v_{c}} \log u_{o}^{T}v_{c} = \frac{\partial}{\partial v_{c}} \sum_{i=1}^{d} (u_{o})_{i} (v_{c})_{i}$$

$$\frac{\partial}{\partial v_{c}} \log u_{o}^{T}v_{c} = \frac{\partial}{\partial v_{c}} \sum_{i=1}^{d} (u_{o})_{i} (v_{c})_{i}$$

$$\frac{\partial}{\partial v_{c}} \log u_{o}^{T}v_{c} = \frac{\partial}{\partial v_{c}} \sum_{i=1}^{d} (u_{o})_{i} (v_{c})_{i}$$

$$\frac{\partial}{\partial v_{c}} \log u_{o}^{T}v_{c} = \frac{\partial}{\partial v_{c}} \sum_{i=1}^{d} (u_{o})_{i} (v_{c})_{i}$$

$$\frac{\partial}{\partial v_{c}} \log u_{o}^{T}v_{c} = \frac{\partial}{\partial v_{c}} \sum_{i=1}^{d} (u_{o})_{i} (v_{c})_{i}$$

$$\frac{\partial}{\partial v_{c}} \log u_{o}^{T}v_{c} = \frac{\partial}{\partial v_{c}} \sum_{i=1}^{d} (u_{o})_{i} (v_{c})_{i}$$

$$\frac{\partial}{\partial v_{c}} \log (p(o|c)) = u_{o} - \frac{1}{\sum_{w=1}^{V} exp(u_{w}^{T}v_{c})} \cdot \left(\sum_{x=1}^{V} exp(u_{x}^{T}v_{c})u_{x}\right)$$

$$= u_{o} - \sum_{x=1}^{V} \frac{exp(u_{x}^{T}v_{c})}{\sum_{w=1}^{V} exp(u_{w}^{T}v_{c})} u_{x} \qquad \text{distribute} \\ \text{term} \\ \text{across sum}$$

$$= u_{o} - \sum_{x=1}^{V} p(x|c) u_{x} \qquad \text{this an expectation:} \\ \text{across sum}$$

$$= u_{o} - \sum_{x=1}^{V} p(x|c) u_{x} \qquad \text{this an expectation:} \\ \text{average over all} \\ \text{context vectors weighted} \\ \text{total vectors weighted} \\ \text{total vectors weighted} \\ \text{total vectors weighted} \\ \text{total vectors derivatives for the center vector parameters} \\ \text{Also need derivatives for output vector parameters} \\ \text{(they're similar)} \\ \text{Then we have derivative w.r.t. all parameters and can minimize}$$

Word similarities

Nearest words to frog:

- 1. frogs
- 2. toad
- 3. litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- 7. eleutherodactylus

litoria

leptodactylidae

rana

eleutherodactylus

http://nlp.stanford.edu/projects/glove/

Distributed word representations can capture the long tail of web queries

Google's RankBrain

Not necessarily as good for very common queries

But great for seeing similarity in the tail

3rd most important ranking signal in Google web search!

Larger-scale deep learning systems [Johnson, Karpathy, Fei-Fei 2015]

DenseCap: Fully Neural Network Localization and Text Generation

Actually understanding what people are saying with language – beyond just recognizing the words they say – remains a big challenge

Deep learning – building large neural networks, trained end-to-end – is proving a very powerful approach to hard artificial intelligence challenges

Neural network learning isn't voodoo and magic! 90% of it is efficient application of the chain rule

Deep Learning for Language Understanding Step 1: Word Vectors

Christopher Manning

Stanford University @chrmanning & @stanfordnlp Harker Programming Invitational 2017