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What is Machine Learning?

Machine	learning is	the	approach	where,	instead	
of	programming	computers	to	follow	instructions,	
we	program	them	to	learn	to	do	things

However,	most	machine	learning	methods	work	
well	because	of	carefully	human-designed	
representations and	input	features

• E.g.,	features	for	finding	named	entities	like	
person	or	organization	names

Machine	learning	becomes	just	optimizing
weights	to	best	make	a	final	prediction

Previous	word at

Current	word Grace

Beginning	bigram <G

Prev and	curr POS IN	NNP

Previous	state Other

Current	signature Xx

Prev state,	cur	sig O-Xx

Prev-cur-next	sig x-Xx-Xx

P.	state	- p-cur	sig O-x-Xx

…



What is Deep Learning?

Representation	learning	is	a	subfield	of	
machine	learning,	where	we attempt	
to	automatically	learn	the	good	
features	or	representations

Deep	learning	algorithms	do	this	by	
attempting	to	learn	multiple	levels	of
representation	h and	an	output

From	“raw”	inputs	x	
(e.g.,	sound,	characters,	or	words)



What is a Neural Network?

(Artificial)	Neural	Networks	work	by	using	distributed	
representations	of	concepts	as	vectors	of	real	numbers

They	compute	representations	by	matrix	multiplies	from	one	
layer	to	another	(followed	by	an	element-wise	rescaling)	



What is Computational Linguistics/NLP?

Computational	linguistics	or	natural	language	processing	is	a	field	
at	the	intersection	of	

• artificial	intelligence/computer	science
• and	linguistics	(the	science	of	human	languages)

Goal: for	computers	to	process	or	understand	human	languages	in	
order	to	perform	tasks	that	are	useful,	e.g.,

• An	agent	that	can	make	appointments	or	order	things
• Question	answering
• Machine	translation

E.g.,	Siri,	Google	Assistant,	Cortana,	… thank	you,	mobile!!!



Commercial world



Deep Learning for Speech

The	first	breakthrough	results	of	deep	
learning	on	a	large	dataset	happened	
in	speech	recognition

• Context-Dependent	Pre-trained	Deep	
Neural	Networks	for	Large	Vocabulary	
Speech	Recognition	(Dahl	et	al.	2010)

Words

Acoustic	model Recog
WER

RT03S	
FSH

Hub5	
SWB

Traditional	
GMM	features

1-pass	
−adapt

27.4 23.6

Deep	Learning 1-pass	
−adapt

18.5
(−33%)

16.1
(−32%)



Deep Learning for Computer Vision
The breakthrough	DL	paper:	
ImageNet	Classification	with	
Deep	Convolutional	Neural	
Networks	by	Krizhevsky,	
Sutskever,	&	Hinton,	2012,	U.	
Toronto.	37%	error	red.

Zeiler and	Fergus	(2013)

8 Olga Russakovsky* et al.
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Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.
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Word vectors: From symbolic to 
distributed word representations

The	vast	majority	of	rule-based	and	statistical	natural	
language	processing	or	web	search	work	regarded	words	as	
atomic	symbols:	hotel, conference

In	machine	learning	vector	space	terms,	this	is	a	vector	with	
one	1	and	a	lot	of	zeroes

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

Deep	learning	people	call	this	a	“one-hot”	representation

Sec. 9.2.2



From symbolic to distributed word 
representations

Its	problem,	e.g.,	for	web	search:
• If	user	searches	for	[Dell	notebook	battery	size],	we	would	
like	to	match	documents	with	“Dell	laptop	battery	capacity”

• If	user	searches	for	[Seattle	motel],	we	would	like	to	match	
documents	containing	“Seattle	hotel”

But
motel [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]T

hotel  [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] = 0
Our	query	and	document	vectors	are	orthogonal
There	is	no	natural	notion	of	similarity	in	a	set	of	one-hot	vectors

Sec. 9.2.2



A solution via distributional 
similarity-based representations

You	can	get	a	lot	of	value	by	representing	a	word	by	
means	of	its	neighbors

“You	shall	know	a	word	by	the	company	it	keeps”
(J.	R.	Firth	1957:	11)

One	of	the	most	successful	ideas	of	modern	NLP
government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

ë These	words	will	represent	banking	ì



Word meaning as a vector
We	build	a	dense	vector	for	each	word	type,	chosen	so	that	it	is	
good	at	predicting	other	words	appearing	in	its	context
… those	other	words	also	being	represented	by	vectors

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271

currency =



Basic idea of learning neural network 
word embeddings

We	define	a	model	that	aims	to	predict	between	a	center	
word	wt and	context	words	in	terms	of	word	vectors

p(context|wt)	=	…

which	has	a	loss	function,	e.g.,

J =	1	−	p(w−t	|wt)	

We	look	at	many	positions	t	in	a	big	amount	of	text

We	keep	adjusting	the	vector	representations	of	words	
to	minimize	this	loss



Skip-gram prediction



Details of Word2Vec
Predict	surrounding	words	in	a	window	of	radius	m of	
every	word

For																						the	simplest	first	formulation	is	

where	o is	the	outside	(or	output)	word	index,	c is	the	
center	word	index,	vc and	uo are	“center”	and	“outside”	
vectors	of	indices	c and	o

Softmax using	word	c to	obtain	probability	of	word	o

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3



Dot products



Softmax function: Standard map
from ℝV to a probability distribution

Exponentiate	to
make	positive

Normalize	to
give	probability



To learn good word vectors:
Compute all vector gradients!

• We	define	the	set	of	all parameters	of	the	model	in	
terms	of	one	long	vector	ϑ

• In	our	case	with	
d-dimensional	vectors
(perhaps	d	=	300),	and
Vmany	words:

• We	then	want	to	“optimize”
these	parameters



Intuition of how to minimize loss for 
a simple function over two parameters

We	start	at	a	random	point	and	walk	in	the	steepest	
direction,	which	is	given	by	the	derivative	of	the	function

Contour	lines	show	
points	of	equal	value	
of	objective	function



Descending by using derivatives
We	will	minimize	a	cost	function	by
gradient	descent

Trivial	example:	(from	Wikipedia)
Find	a	local	minimum	of	the	function	
f(x)	=	x4−3x3+2,	
with	derivative	f'(x)	=	4x3−9x2

Subtracting a 
fraction of the 
gradient moves 
you towards the 

minimum!



Vanilla Gradient Descent Code



Training/optimizing a neural network 
is really all the chain rule!

Chain	rule!	If	y =	f(u)	and	u =	g(x),	i.e.	y	=	f(g(x)),	then:

Simple	example:	











27



Nearest	words	to frog:

1.	frogs
2.	toad
3.	litoria
4.	leptodactylidae
5.	rana
6.	lizard
7.	eleutherodactylus

Word similarities

litoria leptodactylidae

rana eleutherodactylus
http://nlp.stanford.edu/projects/glove/



Distributed word representations can 
capture the long tail of web queries

Google’s	RankBrain

Not	necessarily	as	good	for	very	common	queries

But	great	for	seeing	similarity	in	the	tail

3rd most	important	ranking	signal	in	Google	web	search!



Larger-scale deep learning systems
[Johnson, Karpathy, Fei-Fei 2015]



DenseCap: Fully Neural Network 
Localization and Text Generation



Summary

Actually	understanding	what	people	are	saying	with	
language	– beyond	just	recognizing	the	words	they	say	–
remains	a	big	challenge

Deep	learning	– building	large	neural	networks,	trained	
end-to-end	– is	proving	a	very	powerful	approach	to	hard	
artificial	intelligence	challenges

Neural	network	learning	isn’t	voodoo	and	magic!
90%	of	it	is	efficient	application	of	the	chain	rule
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