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Abstract

We present a machine learning approach to ro-
bust textual inference, in which parses of the text
and the hypothesis sentences are used to mea-
sure their asymmetric “similarity”, and thereby
to decide if the hypothesis can be inferred. This
idea is realized in two different ways. In the first,
each sentence is represented as a graph (extracted
from a dependency parser) in which the nodes
are words/phrases, and the links represent depen-
dencies. A learned, asymmetric, graph-matching
cost is then computed to measure the similar-
ity between the text and the hypothesis. In the
second approach, the text and the hypothesis are
parsed into the logical formula-like representa-
tion used by (Harabagiu et al., 2000). An abduc-
tive theorem prover (using learned costs for mak-
ing different types of assumptions in the proof)
is then applied to try to infer the hypothesis from
the text, and the total “cost” of proving the hy-
pothesis is used to decide if the hypothesis is en-
tailed.

1 Introduction

Below, we illustrate our methods with the following toy
example of entailment:
TEXT: Chris purchased a BMW.
HYPOTHESIS: Chris bought a car.

Using relationships derived from syntactic dependen-
cies, we can represent the text and hypothesis sentences
equivalently as either a directed graph, or as a set of logical
terms, as shown in Figure 1 and Section 3.1. In the graph,
a vertex typically represents a word, but can also represent
a phrase that is interpreted as a single entity. Labeled edges
represent syntactic and semantic relationships tagged by
various modules. The logical formula is derived by con-
structing a term for each node in the graph, and represent-
ing the dependency links with appropriately shared argu-
ments. After presenting the inference methods, we show
how the representations over which they work are derived
from plain text.

2 Entailment by graph matching
We take the view that a hypothesis can be inferred from
the text when the cost of matching the hypothesis graph to
the text graph is low. For the remainder of this section, we
outline a model for assigning a match cost to graphs.

For hypothesis graphH, and text graphT , amatchingM
is a mapping from the vertices ofH to those ofT ; we allow
nodes inH to map to a fictitious NIL vertex if necessary.
Suppose the cost of matchingM is Cost(M). Then we
define the cost of matchingH to T : MatchCost(H,T ) =
minM Cost(M).

One simple cost model is given by the normalized sum
of costs SubCost(v,M(v)) for substituting each vertexv in
H for M(v) in T :

Cost(M) =
1
Z

∑
v∈HV

w(v) SubCost(v,M(v)) (1)

Here,w(v) represents the weight or relative importance
for vertexv, andZ =

∑
w(v) is a normalization constant.

In our implementation, the weight of each vertex was based
on the part-of-speech tag of the word or the type of named
entity, if applicable. For hypothesis vertexv and text ver-
tex M(v), the substitution cost (in[0, 1]) is progressively
higher for the following conditions:

• v andM(v)’s stem and POS / only stem match

• v is a synonym / hypernym ofM(v) (WordNet)

• v andM(v)’s stems are similar according to the word
similarity modules (described later).

As (Punyakanok et al., 2004) demonstrated, models
which also match syntactic relationships between words
can outperform bag-of-words models for TREC QA an-
swer extraction. As in (1), we can measure how relation-
ally similar H andT are by a normalized sum of costs for
substituting each edge relation(v, v′) in H with the edge
relation(M(v),M(v′)) in T . We assign a substitution cost
for edge(v, v′) in H based on the following conditions on
path length:

• M(v) is a parent/ancestor ofM(v′)

• M(v) andM(v′) share a parent/ancestor
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Figure 1: Example graph matching (α = 0.55) for example
pair in Section 2. Dashed lines represent mapping.

As in the vertex case we have weights for each hypothesis
edge,w(e), based upon the edge’s label; typically subject
and object relations are more important to match than oth-
ers. Our final matching cost is given by a convex mixture
of the vertex and relational match costs:
Cost(M) = αVertexCost(M) + (1−α)RelationCost(M).

Notice that minimizing Cost(M) is computationally
hard since RelationCost(M) = 0 if and only if H is iso-
morphic to a subgraph ofT . As an approximation, we
can efficiently find the matchingM∗ which minimizes
VertexCost(·) using the Hungarian method (Kuhn, 1955);
we then perform local greedy hillclimbing search, begin-
ning fromM∗, to approximate the minimal matching.

3 Abductive theorem proving

This method works with a logical formula-like representa-
tion (Harabagiu et al., 2000) of the syntactic dependencies
in the text and hypothesis sentences. The basic idea is that
a hypothesis that can be logically derived from the text is
entailed by it. Such a logical derivation is called a “proof”
of the hypothesis.

The logical formulae capture only the syntactic depen-
dencies in the sentences. Consequently, several entailed
hypotheses that require semantic rewrites (such as “aBMW
is a car”) can be derived from the corresponding text for-
mulae only by using additional assumptions in the proof.
We do not use explicit logical axioms (“rules”) for these as-
sumptions; instead, each assumption that unifies one term
in the hypothesis with another in the text is assigned a cost
based on the judged plausibility of that assumption. This
cost is computed using particular features of the assump-
tion.

Using such a cost model, the inference procedure
searches for a minimum cost proof for the hypothesis. The

hypothesis is judged to be entailed from the text if it has a
proof with cost below a certain learned threshold value.

We also provide a procedure to learn good costs for as-
sumptions from a training set containing examples of en-
tailed and non-entailed hypotheses.

3.1 Representation
For the example, the following logical representation is de-
rived, with each number/letter representing a constant:
T: Chris(1) BMW(2) purchased(3,1,2)
H: Chris(x) car(y) bought(e,x,y)

Each predicate and each argument is also annotated with
other linguistic information not shown here (such as se-
mantic roles and named entity tags) for use in assigning
costs to assumptions.

3.2 Inference
For our representation, proof steps that unify one term from
the text with one term of the hypothesis suffice. We allow
any pair of terms to unify with each other, with a cost as-
signed by theassumption cost model. We relax the require-
ments for logical unification in several ways, adding cost
penalties for each such relaxation:

1. Terms with different predicates can be unified; the
cost penalty is obtained using the term similarity mea-
sures (described later) and the linguistic annotations
on the predicates.

2. The terms can have differing number of arguments,
and the arguments of one term can be matched with
those of the other term in any order. Each argument
matching is assigned a cost based on the compatibil-
ity of the annotations of those arguments. A term pair
might be unified in many ways corresponding to dif-
ferent argument matchings.

3. Constants can be unified with each other at an appro-
priate cost. This cost is precomputed for all constant
pairs in a particular example, and is lowered for spe-
cific pairs—such as when there is possible coreference
or appositive reference.

We developed a specialized abductive theorem prover
to discover the minimum cost proof using uniform cost
search. For our running example, the minimum cost proof
unifiesBMWwith car , andpurchased with bought , at
small costs.

3.3 Learning good costs for assumptions
Given a training set of labeled text-hypothesis pairs (such
as the RTE development set), we propose a learning algo-
rithm that tries to learn good assumption costs.1

1Details are omitted here due to space constraints. See (Raina
et al., 2005) for details.



4 Producing representations and similarities
for inference

4.1 Syntactic processing

The first steps of the front-end deal with tokenization and
parsing. Beyond this base level, the performance of the
inference methods depends critically on our ability to iden-
tify similarities and differences between our fairly syntac-
tic representations of the text and the hypothesis. This is
largely dependent on being able to perform normalization
and enrichment tasks that will reveal essential similarities,
and on having good measures of lexical semantic similarity
between words and larger units.

We do deterministic tokenization and then use full sen-
tence parsing to reveal syntactic dependencies. The parser
used was a variant of (Klein and Manning, 2003). The
most important addition was training on an extra dozen
sentences that gave the parser some exposure to topics in
the news in 2005 rather than only those appearing in 1989.
Exploiting headedness relations and hand-written pattern-
matching rules, the parse tree is converted into a set of
typed dependencies between words, representing grammat-
ical relations (like subject and object) and other modifier
dependencies, including such things as appositives, nega-
tions, and temporal modifiers. This is the basis of the
graph structure in Figure 1. Various collapsings are then
done to normalize and improve this dependency represen-
tation. Prepositions and possessive’s are changed from be-
ing vertices to relation names, and coordinations explicitly
represent the conjuncts. A conditional random field (Laf-
ferty et al., 2001) named entity recognition system is run
to identify seven classes (Person, Organization, Location;
Percent, Time, Money, and Date). The first three are col-
lapsed into single nodes tagged NNP (proper noun) prior
to parsing, while the latter four are grouped after parsing,
but before the conversion to a dependency representation,
and their values are normalized into a canonical form us-
ing hand-written regular expressions. This includes rep-
resenting approximate and relative quantities (around$40
and less than 2 dollars) as well as exact amounts. At the
same time, we also collapse collocations, which are found
in WordNet, likeback offandthrow upto a single node.

4.2 Additional dependencies between nodes

We augment the syntactic dependency graph with seman-
tic role arcs using a Propbank-trained semantic role la-
beler (Toutanova et al., 2005). For each verb, we added
edges between that verb and the head word of each of its
arguments, and labeled the edges with the appropriate se-
mantic role. This allowed us to add relations (between
words) that were not captured by surface syntax, and also
to classify modifying phrases as temporal, locative, and
other categories. We added coreference relations between
noun phrases and named entities using a maximum entropy
coreference classifier modeled after (Soon et al., 2001).

Dataset General ByTask
Accuracy CWS Accuracy CWS

DevSet1 64.8% 0.778 65.5% 0.805
DevSet2 52.1% 0.578 55.7% 0.661

DevSet1 + DevSet2 58.5% 0.679 60.8% 0.743
Test set 56.2% 0.620 55.2% 0.686

Table 1: Accuracy and confidence weighted score (CWS)
on RTE datasets.

Task General ByTask
Accuracy CWS Accuracy CWS

CD 79.3% 0.903 84.0% 0.926
IE 47.5% 0.493 55.0% 0.590
IR 56.7% 0.590 55.6% 0.604
MT 46.7% 0.480 47.5% 0.479
PP 58.0% 0.623 54.0% 0.535
QA 48.5% 0.478 43.9% 0.466
RC 52.9% 0.523 50.7% 0.480

Table 2: Accuracy and confidence weighted score (CWS)
split by task on the RTE test set.

4.3 Methods for discovering term similarity
As in other work, e.g., (Moldovan et al., 2000), we relied
on WordNet (Miller, 1995) heavily for lexical knowledge.
The WordNet::Similarity module (Pedersen et al.,
2004) was used to compute a symmetric similarity score
between two phrases. If the queried phrases are listed as
antonyms in WordNet, the match is given a very high cost
in the inference procedures. Derivational forms in Word-
Net are used to detect nominalized events and modify the
representation (e.g.,murder of police officerentails po-
lice officer killed). WordNet does not include prepositions.
We semi-automatically constructed a matrix of preposition
similarity values using synonyms (e.g.,over and above)
and antonyms (e.g.,over and under). Synonyms were
found by grouping prepositions into clusters. Antonym
pairs were added manually. Finally, we compiled a list of
206 countries and their derivatives manually (e.g.,Philip-
pines- Filipino), and collected a list of 276 frequently oc-
curring acronyms in a large corpus, and recorded their ex-
pansions.

The inference procedures require considerable semantic
knowledge to infer some rewrites using just phrasal depen-
dencies; for example,won victory in Presidential election
might entailbecame President. We attempted to discover
such rewrites by looking for similarly placed phrases in a
large corpus, using a backed-off modification of the simi-
larity measure described in (Lin and Pantel, 2001).

Sometimes both of these methods are too precise. Words
that are used in the same context often do not have explicit
relationships between them; for instancemarathonandrun
clearly have a semantic relationship not considered in the
WordNet hierarchy. To overcome this we usedInfomap ,2

2Available athttp://infomap.stanford.edu .



Text Hypothesis Our answer Conf Comments
A Filipino hostage in Iraq was re-
leased.

A Filipino hostage was freed in
Iraq. (TRUE)

True 0.61 Verb rewrite is handled. Phrasal or-
dering does not affect cost.

The government announced last
week that it plans to raise oil prices.

Oil prices drop.(FALSE) False 0.69 High cost given for substituting
word for its antonym.

Shrek 2 rang up $92 million. Shrek 2 earned $92 million.
(TRUE)

False 0.51 Collocation “rang up” is not known
to be similar to “earned”.

Sonia Gandhi can be defeated in the
next elections in India by BJP.

Sonia Gandhi is defeated by
BJP.(FALSE)

True 0.66 “can be” does not indicate the com-
plement event occurs.

Fighters loyal to Moqtada al-Sadr
shot down a U.S. helicopter Thursday
in the holy city of Najaf.

Fighters loyal to Moqtada al-
Sadr shot down Najaf.(FALSE)

True 0.67 Should recognize non-Location
cannot be substituted for Location.

C and D Technologies announced
that it has closed the acquisition of
Datel, Inc.

Datel Acquired C and D tech-
nologies.(FALSE)

True 0.59 Failed to penalize switch in seman-
tic role structure enough

Table 3: Analysis of results on some RTE examples.

an open-source implementation of Latent Semantic Anal-
ysis (Deerwester et al., 1990), to score words according
to distributional similarity (measured using the British Na-
tional Corpus). To further exploit distributional similarity,
we also implemented a measure of similarity that is com-
puted as the ratio between the number of search results
from google.com for two phrases when queried sepa-
rately and in combination.

5 Results and analysis
Our overall system is a combination of the two systems de-
scribed in Sections 2 and 3. Each system produces a real
number score that is normalized to have zero mean and unit
variance, and then converted to a confidence value using
the cumulative distribution function for a normal distribu-
tion. These individual scores are then linearly combined
using logistic regression, with the weights trained on the
RTE development sets. The first version (calledGeneral )
trained one set of weights for all RTE tasks; the second
version (calledByTask ) trained separate weights per task.
All parameters except the classifier weights were identical.

Table 1 reports the performance of our final classifiers
on different datasets. Table 2 shows the performance sepa-
rately on each task in the test set.

A random guessing baseline achieves accuracy 50% and
confidence weighted score (CWS) 0.50. Our test set accu-
racy is only a few points above random guessing; however,
the CWS is significantly higher. Thus, our predictions are
well-calibrated and more robust; this is probably because
our learning and classifier combination procedures maxi-
mize the likelihood of the full predicted distribution rather
than just a binary accuracy value.

Table 3 has an analysis of some examples from the RTE
datasets. The term similarity routines seemed most impor-
tant for good performance, while many of the other mod-
ules are useful in specific cases. Many of the language
resources used were sparse (e.g., antonyms in WordNet);
high-recall resources would be extremely beneficial.
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