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Below, we illustrate our methods with the following toy

Abstract

We present a machine learning approach to ro-
bust textual inference, in which parses of the text
and the hypothesis sentences are used to mea-
sure their asymmetric “similarity”, and thereby
to decide if the hypothesis can be inferred. This
idea is realized in two different ways. In the first,
each sentence is represented as a graph (extracted
from a dependency parser) in which the nodes
are words/phrases, and the links represent depen-
dencies. A learned, asymmetric, graph-matching
cost is then computed to measure the similar-
ity between the text and the hypothesis. In the
second approach, the text and the hypothesis are
parsed into the logical formula-like representa-
tion used by (Harabagiu et al., 2000). An abduc-
tive theorem prover (using learned costs for mak-
ing different types of assumptions in the proof)
is then applied to try to infer the hypothesis from
the text, and the total “cost” of proving the hy-
pothesis is used to decide if the hypothesis is en-
tailed.

Introduction

example of entailment:
TEXT: Chris purchased a BMW.
HYPOTHESIS: Chris bought a car.

2 Entailment by graph matching

We take the view that a hypothesis can be inferred from
the text when the cost of matching the hypothesis graph to
the text graph is low. For the remainder of this section, we
outline a model for assigning a match cost to graphs.

For hypothesis grapH, and text grapfi’, amatchingM/
is a mapping from the vertices &f to those ofl"; we allow
nodes inH to map to a fictitious NIL vertex if necessary.
Suppose the cost of matching is CostM). Then we
define the cost of matching to 7: MatchCostH,T) =
min,; Cos{M).

One simple cost model is given by the normalized sum
of costs SubCoét, M (v)) for substituting each vertexin
H for M(v)inT:

Cos{M) = 1 > w(v) SubCostw, M (v)) (1)
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Here,w(v) represents the weight or relative importance
for vertexv, andZ = Y w(v) is a normalization constant.
In our implementation, the weight of each vertex was based
on the part-of-speech tag of the word or the type of named
entity, if applicable. For hypothesis vertexand text ver-
tex M (v), the substitution cost (ifD, 1]) is progressively
higher for the following conditions:

e v andM (v)’s stem and POS / only stem match

e v is asynonym /hypernym ot/ (v) (WordNej}

e v andM (v)’'s stems are similar according to the word
similarity modules (described later).

Using relationships derived from syntactic dependen-
cies, we can represent the text and hypothesis sentenceés (Punyakanok et al., 2004) demonstrated, models
equivalently as either a directed graph, or as a set of logic@hich also match syntactic relationships between words
terms, as shown in Figure 1 and Section 3.1. In the grapf@n outperform bag-of-words models for TREC QA an-
a vertex typically represents a word, but can also represefier extraction. As in (1), we can measure how relation-
a phrase that is interpreted as a single entity. Labeled edgdlly similar / andT" are by a normalized sum of costs for
represent syntactic and semantic relationships tagged Bybstituting each edge relatign, v') in H with the edge
various modules. The logical formula is derived by confelation(A(v), M(v')) in T. We assign a substitution cost
structing a term for each node in the graph, and represef@ edge(v, v’) in H based on the following conditions on
ing the dependency links with appropriately shared argurath length:
ments. After presenting the inference methods, we show . ,
how the representations over which they work are derived ® 3 (v) is a parent/ancestor aff (v')
from plain text. e M(v) andM (v') share a parent/ancestor



" Yj‘ect
Synonym
: Match

i Cost: 0.2
v .
i Hypernym
i Match
i Cost: 0.4

Chris
(person)

Exact Match

i Cost: 0.0 purchased

Chris

hypothesis is judged to be entailed from the text if it has a
proof with cost below a certain learned threshold value.

We also provide a procedure to learn good costs for as-
sumptions from a training set containing examples of en-
tailed and non-entailed hypotheses.

3.1 Representation

For the example, the following logical representation is de-
rived, with each number/letter representing a constant:
T: Chris(1) BMW(2) purchased(3,1,2)

(person)

H: Chris(x) car(y) bought(e,x,y)
Each predicate and each argument is also annotated with

Vertex Cost: (0.0 +0.2+0.4)/3=0.2
Relation Cost: 0 (Graphs Isomorphic)
Match Cost: 0.55 (0.2) + (.45) 0.0 =0.11

other linguistic information not shown here (such as se-
mantic roles and named entity tags) for use in assigning
costs to assumptions.

Figure 1: Example graph matching & 0.55) for example

_ . . : 3.2 Inference
pair in Section 2. Dashed lines represent mapping.

For our representation, proof steps that unify one term from
the text with one term of the hypothesis suffice. We allow

As in the vertex case we have weights for each hypothesg8ly Pair of terms to unify with each other, with a cost as-
edge,w(e), based upon the edge’s label; typically subject!9ned by th@ssumption cost modele relax the require-
and object relations are more important to match than otf?€nts for logical unification in several ways, adding cost
ers. Our final matching cost is given by a convex mixturé€nalties for each such relaxation:
of the vertex and relational match costs:
Cos{M) = aVertexCostM) + (1 — «)RelationCostM ).
Notice that minimizing Cosf\/) is computationally
hard since RelationCqst/) = 0 if and only if H is iso-
morphic to a subgraph df'. As an approximation, we
can efficiently find the matchind/* which minimizes
VertexCost-) using the Hungarian method (Kuhn, 1955);
we then perform local greedy hillclimbing search, begin-
ning from M *, to approximate the minimal matching.

1. Terms with different predicates can be unified; the
cost penalty is obtained using the term similarity mea-
sures (described later) and the linguistic annotations
on the predicates.

2. The terms can have differing number of arguments,
and the arguments of one term can be matched with
those of the other term in any order. Each argument
matching is assigned a cost based on the compatibil-
ity of the annotations of those arguments. A term pair
3 Abductive theorem proving might be unified in many ways corresponding to dif-
ferent argument matchings.
This method works with a logical formula-like representa- o -0 6 can be unified with each other at an appro-
tion (Harabagiu et al., 2000) of the syntactic dependencies ) . .
. X g . priate cost. This cost is precomputed for all constant
in the text and hypothesis sentences. The basic idea is that o . .
. . . : pairs in a particular example, and is lowered for spe-
a hypothesis that can be logically derived from the text is o . . .
' ; . o . " cific pairs—such as when there is possible coreference
entailed by it. Such a logical derivation is called a “proof »
or appositive reference.

of the hypothesis.

The logical formulae capture only the syntactic depen- \ye developed a specialized abductive theorem prover
dencies in the sentences. Consequently, several entailgdgiscover the minimum cost proof using uniform cost

hypotheses that require semantic rewrites (such 8/  search. For our running example, the minimum cost proof
is acar”) can be derived from the corresponding text for-nifiesBMwWith car , andpurchased  with bought | at
mulae only by using additional assumptions in the proofsy,5)| costs.

We do not use explicit logical axioms (“rules”) for these as-

sumptions; instead, each assumption that unifies one tedTs | earning good costs for assumptions

in the hypothesis with another in the text is assigned a co&t

based on the judged plausibility of that assumption. This lven a training set of labeled text-hypothesis pairs (such
. . X as the RTE development set), we propose a learning algo-
cost is computed using particular features of the assum

tion Rthm that tries to learn good assumption cdsts.

Using such a cost model, the inference procedure Ipetails are omitted here due to space constraints. See (Raina
searches for a minimum cost proof for the hypothesis. Thet al., 2005) for details.



4 Producing representations and similarities Dataset General ByTask

: Accuracy | CWS | Accuracy | CWS

for inference DevSetl 64.8% | 0.778| 65.5% | 0.805

4.1 Syntac“c processing DevSet2 52.1% 0.578 55.7% 0.661
. . . DevSetl + DevSet2 58.5% | 0.679| 60.8% | 0.743

The first steps of the front-end deal with tokenization and Test set 56.2% | 0.620| 55.2% | 0.686

parsing. Beyond this base level, the performance of the
inference methods depends critically on our ability to idenTable 1: Accuracy and confidence weighted score (CWS)
tify similarities and differences between our fairly syntacon RTE datasets.

tic representations of the text and the hypothesis. This is
largely dependent on being able to perform normalization Task| ~ General ByTask
and enrichment tasks that will reveal essential similarities, Accuracy | CWS | Accuracy | CWS

. . . . . - . 0 . . 0 .
and on having good measures of lexical semantic similarity CIZS Z? goﬁ; 8 Zgg 2‘51' 802 8 ggg

between words and larger units. IR 56.7% | 0590| 55.6% | 0.604

We do deterministic tokenization and then use full sen- MT | 46.7% | 0.480| 47.5% | 0.479
tence parsing to reveal syntactic dependencies. The parser PP | 58.0% | 0.623| 54.0% | 0.535
used was a variant of (Klein and Manning, 2003). The QA | 48.5% | 0478| 43.9% | 0.466

RC 52.9% | 0.523| 50.7% | 0.480

most important addition was training on an extra dozen
sentence§ that gave the parser some exposure to.top|c Ubie 2: Accuracy and confidence weighted score (CWS)
the news in 2005 rather than only those appearing in 1989, .

" . . plit by task on the RTE test set.
Exploiting headedness relations and hand-written pattern=
matching rules, the parse tree is converted into a set of

typed dependencies between words, representing grammat3s  Methods for discovering term similarity
ical relations (like subject and object) and other modifiehq in other work e.g., (Moldovan et al., 2000), we relied

dependencies, including such things as appositives, neqg; \ordNet (Miller, 1995) heavily for lexical knowledge.
tions, and temporal modifiers. This is the basis of thqheWordNet::SimiIarity module (Pedersen et al.
graph structure in Figure 1. Various collapsings are thegn,y was used to compute a symmetric similarity score
done to normalize and improve this dependency represefiayyeen two phrases. If the queried phrases are listed as
tation. Prepositions and possesss/are changed from be- 514nyms in WordNet, the match is given a very high cost
ing vertices to relation names, and coordinations explicitly, e inference procedures. Derivational forms in Word-
represent the conjuncts. A conditional random field (Lafyet are used to detect nominalized events and modify the
ferty et al., 2001) named entity recognition system is lURspresentation (e.gmurder of police officerentails po-

to identify seven classes (Person, Organization, Locatiofee fficer killeg. WordNet does not include prepositions.

Percent, Time, Money, and Date). The first three are Colye semi-automatically constructed a matrix of preposition

lapsed _into single nodes tagged NNP (proper noun) F’ri%rimilarity values using synonyms (e.@ver and above
to parsing, while the Igtter four are grouped after parsingng antonyms (e.g.over and unded. Synonyms were
but before the conversion to a dependency representatigg, g by grouping prepositions into clusters. Antonym

and their values are normalized into a canonical form u?)'airs were added manually. Finally, we compiled a list of
ing hand-written regular expressions. This includes repgg countries and their derivatives manually (eRhilip-

resenting approximate and relative quantiti@®(nd$40  inas_ Filipino), and collected a list of 276 frequently oc-

andless than 2 dollarsas well as exact amounts. At the o\, ing acronyms in a large corpus, and recorded their ex-
same time, we also collapse collocations, which are fo“’}ﬁ’ansions

in WordNet, likeback offandthrow upto a single node.

The inference procedures require considerable semantic
. . knowledge to infer some rewrites using just phrasal depen-
4.2 Aaditional depende.nmes LSS ) dencies; for exampleyon victory in Presidential election
We augment the syntactic dependency graph with semagight entailbecame PresidentWe attempted to discover
tic role arcs using a Propbank-trained semantic role lasch rewrites by looking for similarly placed phrases in a

beler (Toutanova et al., 2005). For each verb, we addggrge corpus, using a backed-off modification of the simi-
edges between that verb and the head word of each of itity measure described in (Lin and Pantel, 2001).

arguments, and labeled the edges with the appropriate S,y etimes both of these methods are too precise. Words

mantic role. This allowed us to add relations (betweeg,,; 5re ysed in the same context often do not have explicit
words) that were not captured by surface syntax, and aI§8Iationships between them; for instamoarathonandrun

to classify modifying phrases as temporal, locative, anglearly have a semantic relationship not considered in the

other categories. We added coreference relations betwegp 4net hierarchy. To overcome this we ugetbmap 2
noun phrases and named entities using a maximum entropy '

coreference classifier modeled after (Soon et al., 2001).  *Available athttp://infomap.stanford.edu



Text Hypothesis Our answer| Conf | Comments

A Filipino hostage in Iraq was rer A Filipino hostage was freed in ~ True 0.61 | Verb rewrite is handled. Phrasal or-

leased. Iraq. (TRUE) dering does not affect cost.

The government announced lasOil prices drop.(FALSE) False 0.69 | High cost given for substituting

week that it plans to raise oil prices word for its antonym.

Shrek 2 rang up $92 million. Shrek 2 earned $92 million. False 0.51 | Collocation “rang up” is not knowr)
(TRUE) to be similar to “earned”.

Sonia Gandhi can be defeated in th&onia Gandhi is defeated hy True 0.66 | “can be” does not indicate the com-

next elections in India by BJP. BJP.(FALSE) plement event occurs.

Fighters loyal to Mogtada al-SadrFighters loyal to Moqtada alr  True 0.67 | Should recognize non-Location

shotdown a U.S. helicopter ThursdaySadr shot down Najaf{FALSE) cannot be substituted for Location.

in the holy city of Najaf.

C and D Technologies announcedatel Acquired C and D techr  True 0.59 | Failed to penalize switch in seman-

that it has closed the acquisition ¢fnologies.(FALSE) tic role structure enough

Datel, Inc.

Table 3: Analysis of results on some RTE examples.
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