Extrapolation Methods for Accelerating PageRank
Computations

Taher H. Haveliwala
Stanford University
taherh@cs.stanford.edu

Sepandar D. Kamvar
Stanford University
sdkamvar@stanford.edu

ABSTRACT

We present a novel algorithm for the fast computation of PageRank,
a hyperlink-based estimate of the “importance” of Web pages. The
original PageRank algorithm uses the Power Method to compute
successive iterates that converge to the principal eigenvector of the
Markov matrix representing the Web link graph. The algorithm
presented here, called Quadratic Extrapolation, accelerates the con-
vergence of the Power Method by periodically subtracting off es-
timates of the nonprincipal eigenvectors from the current iterate of
the Power Method. In Quadratic Extrapolation, we take advantage
of the fact that the first eigenvalue of a Markov matrix is known
to be 1 to compute the nonprincipal eigenvectors using successive
iterates of the Power Method. Empirically, we show that using
Quadratic Extrapolation speeds up PageRank computation by 50-
300% on a Web graph of 80 million nodes, with minimal overhead.

1. INTRODUCTION

The PageRank algorithm for determining the “importance” of
Web pages has become a central technique in Web search [17]. The
core of the PageRank algorithm involves computing the principal
eigenvector of the Markov matrix representing the hyperlink struc-
ture of the Weh. As the Web graph is very large, containing over a
billion nodes, the PageRank vector is generally computed offline,
during the preprocessing of the Web crawl, before any queries have
been issued.

The development of techniques for computing PageRank effi-
ciently for Web-scale graphs is important for a number of reasons.
For Web graphs containing a billion nodes, computing a PageRank
vector can take several days. Computing PageRank quickly is nec-
essary to reduce the lag time from when a new crawl is completed
to when that crawl can be made available for searching. Further-
more, recent approaches to personalized and topic-sensitive Page-
Rank schemes [11, 19, 13] require computing many PageRank vec-
tors, each biased towards certain types of pages. These approaches
intensify the need for faster methods for computing PageRank.

Eigenvalue computation is a well-studied area of numerical lin-
ear algebra for which there exist many fast algorithms. However,
many of these algorithms are unsuitable for our problem as they re-
quire matrix inversion, a prohibitively costly operation for a Web-
scale matrix. Here, we present a series of novel algorithms devised
expressly for the purpose of accelerating the convergence of the it-
erative PageRank computation. We show empirically on an 80M
page Web crawl that these algorithms speed up the computation of
PageRank by 50-300%.

Gene H. Golub
Stanford University
golub@stanford.edu

Christopher D. Manning
Stanford University
manning@cs.stanford.edu

2. PRELIMINARIES

In this section we summarize the definition of PageRank [17]
and review some of the mathematical tools we will use in analyz-
ing and improving the standard iterative algorithm for computing
PageRank.

Underlying the definition of PageRank is the following basic as-
sumption. A link from a page v € Web to a page v € Web can
be viewed as evidence that v is an “important” page. In particu-
lar, the amount of importance conferred on v by w is proportional
to the importance of w and inversely proportional to the number of
pages u points to. Since the importance of « is itself not known,
determining the importance for every page ¢ € Web requires an
iterative fixed-point computation.

To allow for a more rigorous analysis of the necessary compu-
tation, we next describe an equivalent formulation in terms of a
random walk on the directed Web graph G. Let u — v denote the
existence of an edge from u to v in G. Let deg(u) be the outdegree
of page u in G. Consider a random surfer visiting page « at time k.
In the next time step, the surfer chooses a node v; from among «’s
out-neighbors {v|u — v} uniformly at random. In other words, at
time k + 1, the surfer lands at node v; € {v|u — v} with proba-
bility 1/ deg(u).

The PageRank of a page i is defined as the probability that at
some particular time step k& > K, the surfer is at page ¢. For
sufficiently large K, and with minor modifications to the random
walk, this probability is unique, illustrated as follows. Consider
the Markov chain induced by the random walk on G, where the
states are given by the nodes in G, and the stochastic transition
matrix describing the transition from j to ¢ is given by P with
Pj; = 1/ deg(j). For simplicity and consistency with prior work,
the remainder of the discussion will be in terms of the transpose
matrix, M = PT. l.e., the transition probability distribution for a
surfer at node 7 is given by row ¢ of P, and column ¢ of M. For M
to be a valid transition probability matrix, every node must have at
least 1 outgoing transition; e.g., M should have no columns con-
sisting of all zeros. This holds if G does not have any pages with
outdegree 0, which does not hold for the Web graph. M can be
converted into a valid transition matrix by adding a complete set
of outgoing transitions to pages with outdegree 0. In other words,
we can define the new matrix M’ where all states have at least one
outgoing transition in the following way. Let n be the number of
nodes (pages) in the Web graph. Let 5 be the n-dimensional col-
umn vector representing a uniform probability distribution over all
nodes:

5= 2 ®

Yy =cMZ;
w =[]~ (171l
Y =Y+ wp,

Algorithm 1: Computing § = AZ

Let d be the n-dimensional column vector identifying the nodes
with outdegree 0:

1 ifdeg(j) =0,
di = .
0 otherwise

Then we construct M’ as follows:
D =px dT
M =M+D

In terms of the random walk, the effect of D is to modify the tran-
sition probabilities so that a surfer visiting a dangling page (i.e., a
page with no outlinks) randomly jumps to another page in the next
time step, using the distribution given by p.

By the Ergodic Theorem for Markov chains [9], the Markov
chain defined by M’ has a unique stationary probability distribu-
tion if M’ is aperiodic and irreducible; the former holds for the
Markov chain induced by the Web graph. The latter holds iff G
is strongly connected, which is generally not the case for the Web
graph. In the context of computing PageRank, the standard way
of ensuring this property is to add a new set of complete outgoing
transitions, with small transition probabilities, to all nodes, creat-
ing a complete (and thus strongly connected) transition graph. In
matrix notation, we construct the irreducible Markov matrix A as
follows:

E :ﬁX []—]1><77,
1
[E]an

A=cM' +(1—-c)E

if p'isthe uniform distribution

In terms of the random walk, the effect of E is as follows. At each
time step, with probability (1 — ¢), a surfer visiting any node will
jump to a random Web page (rather than following an outlink). The
destination of the random jump is chosen according to the proba-
bility distribution given in p. Artificial jumps taken because of
are referred to as teleportation.

By redefining the vector ' given in Equation 1 to be nonuniform,
so that D and E add artificial transitions with nonuniform probabil-
ities, the resultant PageRank vector can be biased to prefer certain
kinds of pages. For this reason, p'is referred to as the personaliza-
tion vector.

Note that the edges artificially introduced by D and E never need
to be explicitly materialized, so this construction has no impact on
efficiency or the sparsity of the matrices used in the computations.
In particular, the matrix-vector multiplication § = AZ can be im-
plemented efficiently using Algorithm 1.

Assuming that the probability distribution over the surfer’s lo-
cation at time 0 is given by Z(®), the probability distribution for
the surfer’s location at time k is given by #(® = A*z©® . The
unique stationary distribution of the Markov chain is defined as
limg 00 2, which is equivalent to limg_.o A*z(®). This is
simply the principal eigenvector of the Markov matrix A, which
is exactly the PageRank vector we would like to compute, and is
independent of the initial distribution z(*.

The standard PageRank algorithm computes the principal eigen-
vector by starting with Z(®) = 5’and computing successive iterates

#*+D = Az® until convergence. This is known as the Power
Method, and is discussed in further detail in Section 4.

While many algorithms have been developed for fast eigenvec-
tor computations, many of them are unsuitable for this problem
because of the size and sparsity of the Web matrix (see Section 8.1
for a discussion of this).

In this paper, we develop a fast eigensolver, based on the Power
Method, that is specifically tailored to the PageRank problem and
Web-scale matrices. This algorithm, called Quadratic Extrapola-
tion, accelerates the convergence of the Power Method by peri-
odically subtracting off estimates of the nonprincipal eigenvectors
from the current iterate). In Quadratic Extrapolation, we take
advantage of the fact that the first eigenvalue of a Markov matrix is
know to be 1 to compute estimates of the nonprincipal eigenvectors
using successive iterates of the Power Method. This allows seam-
less integration into the standard PageRank algorithm. Intuitively,
one may think of Quadratic Extrapolation as using successive iter-
ates generated by the Power Method to extrapolate the value of the
principal eigenvector.

3. EXPERIMENTAL SETUP

In the following sections, we will be introducing a series of algo-
rithms for computing PageRank, and discussing the rate of conver-
gence achieved on realistic datasets. Our experimental setup was
as follows. We used two datasets of different sizes for our exper-
iments. The STANFORD.EDU link graph was generated from a
crawl of the st anf or d. edu domain created in September 2002
by the Stanford WebBase project. This link graph contains roughly
280,000 nodes, with 3 million links, and requires 12MB of stor-
age. We used STANFORD.EDU while developing the algorithms,
to get a sense for their performance. For real-world, Web-scale
performance measurements, we used the LARGEWEB link graph,
generated from a large crawl of the Web that had been created by
the Stanford WebBase project in January 2001 [12]. LARGEWEB
contains roughly 80M nodes, with close to a billion links, and re-
quires 3.6GB of storage. Both link graphs are stored using an adja-
cency list representation, with pages represented as 4-byte integers.
On an AMD Athlon 1533MHz machine with a 6-way RAID-5 disk
volume and 2GB of main memory, each application of Algorithm 1
on the 80M page LARGEWEB dataset takes roughly 10 minutes.
Given that computing PageRank generally requires up to 100 ap-
plications of Algorithm 1, the need for fast methods is clear.

We measured the relative rates of convergence of the algorithms
that follow using the Ly norm of the residual vector; i.e.,

142 2,

We describe why the L, residual is an appropriate measure in Sec-
tion 7.

4. POWER METHOD

4.1 Formulation

One way to compute the stationary distribution of a Markov
chain is by explicitly computing the distribution at successive time
steps for several time steps, using £**+Y = AZ®*) until the distri-
bution converges.

This leads us to Algorithm 2, the Power Method for computing
the principal eigenvector of A. The Power Method is the oldest
method for computing the principal eigenvector of a matrix, and
is at the heart of both the motivation and implementation of the
original PageRank algorithm (in conjunction with Algorithm 1).

function #(™ = PowerMethod() {
720 — 7
repeat
g+l — Af(k);
§ = [[*H —*||;
until 6 < ¢;

}
Algorithm 2: Power Method

The intuition behind the convergence of the power me hod is as
follows. For simplicity, assume that the start vector) lies in
the subspace spanned by the eigenvectors of A.* Then Z(®) can be
written as a linear combination of the eigenvectors of A:

7O =@ + sz + ... + Qmiim 2
Since we know that the first eigenvalue of a Markov matrix A1 = 1,
M = AZO = @ + ashotls + ... + AmAmiim ()

and
2™ = A"FO = @ 4 b + .+ A AT (4)

Since A, < ... < X2 < 1, A®WE® approaches @, as n grows
large. Therefore, the Power Method converges to the principal
eigenvector of the Markov matrix A.

4.2 Operation Count

A single iteration of the Power Method consists of the single
matrix-vector multiply AZ™). Generally, this is an O(n?) oper-
ation. However, if the matrix-vector multiply is performed as in
Algorithm 1, the matrix M is so sparse that the matrix-vector mul-
tiply is essentially O(n). In particular, the average outdegree of
pages on the Web has been found to be around 7 [15]. On our
datasets, we observed an average of around 8 outlinks per page.

It should be noted that if 5 is close to 1, then the power method
is slow to converge, because n must be large before A3 is close to
0.

4.3 Resultsand Discussion

When the teleport probability 1 — ¢ is large (¢ < .85), and the
personalization vector p'is uniform over all pages, the eigengap for
the Markov matrix A is large,? and the Power Method works rea-
sonably well. However, for a large teleport probability (and with
a uniform personalization vector p), the effect of link spam is in-
creased, and pages can achieve unfairly high rankings. In the ex-
treme case, for a teleport probability of 1—c = 1, the assignment of
rank to pages becomes uniform. Chakrabarti et al. [5] suggest that
¢ should be tuned based on the connectivity of topics on the Web.
Such tuning has generally not been possible, as the convergence of
PageRank slows down dramatically for small values of 1 — ¢ (i.e.,
values of ¢ close to 1).

In Figure 1, we show the convergence on the LARGEWEB dataset
of the Power Method for ¢ € {0.90, 0.95} using a uniform 7. Note
that increasing c slows down convergence. Since each iteration of
the Power Method takes 10 minutes, computing 100 iterations re-
quires over 16 hours. Note that the Web is estimated to contain over
a billion pages; using the Power Method on Web graphs close to the
size of the full Web could require several days of computation.

1This assumption does not affect convergence guarantees.
2Follows from the Irkhoff Inequality [8].

1 T T
c=0.90 —&—
€=0.95 -—o--

_ 01t %
[1o}
2
= ®,
g Sog
b g,

0.01 | o0

GGQ
SSG
SO‘G%
%%
b
0.001 o
0 10 20 30 40 50 60 70 80

of iterations

Figure 1: Comparison of convergence rate for the standard
Power Method on the LARGEWEB dataset for ¢ = 0.90 and
c=0.95.

In the next sections, we describe how to remove the error com-
ponents of z(*) along the direction of @ and s, thus increasing
the effectiveness of Power Method iterations.

5. AITKEN EXTRAPOLATION

5.1 Formulation

We begin by introducing an algorithm which we shall call Aitken
Extrapolation. We develop Aitken Extrapolation as follows. We
assume that the current iterate) can be expressed as a linear
combination of the first two eigenvectors. This assumption allows
us to solve for the principal eigenvector @ in closed form using the
successive iterates (%), ..., g5+,

Of course, *) can only be approximated as a linear combina-
tion of the first two eigenvectors, so the ; that we compute is
only an estimate of the true 1. However, it can be seen from sec-
tion 4.1 that this approximation becomes increasingly accurate as
k becomes larger.

We begin our formulation of Aitken Extrapolation by assuming
that Z(*) can be expressed as a linear combination of the first two
eigenvectors.

f<k) = U1 + anls (5)

Since the first eigenvalue \; of a Markov matrix is 1, we can write
the next two iterates as:

D = A7 = @) 4 asheii (6)
gD = A7FD = @ 4 aoN i)
Now, let us define
g = (@Y =2l ®)
hi = m§k+2) — 21§k+1) + mi-k) 9)

where x; represents the ith component of the vector Z. Doing sim-
ple algebra using equations 6 and 7 gives:

gi = a3(he—1)°(u2); (10)
hi = as(A2— 1)2(u2)i (11)
Now, let us define f; as the quotient £ :
_ 200, — 1)2(us)2
fi — & — 062()\2 1)2(u2)ZA (12)
hz 042()\2 — 1) (UQ)Z

= az(u2); (13)

function z* = Aitken(z(®)) {
gk+1) — Af(k);
gk+2) — Af(kﬂ);
fori=1:ndo
= D a0y
hi =z QxEkH) + 2",

(%) = z® — gi/hi;

end
}
Algorithm 3: Aitken Extrapolation
Therefore,
f=asiis (14)
Hence, from equation 5, we have a closed-form solution for 1 :
i =29 — agity = &) — f (15)

However, since this solution is based on the assumption that 7
can be written as a linear combination of % and @2, equation 15
gives only an approximation to ;. Algorithm 3 and Algorithm 4
show how to use Aitken Extrapolation in conjunction with the Power
Method to get consistently better estimates of ;.

Aitken Extrapolation is equivalent to applying the well-known
Aitken A2 method for accelerating linearly convergent sequences [1]
to each component of the iterate Z(*). What is novel here is this
derivation of Aitken acceleration, and the proof that Aitken accel-
eration computes the principal eigenvector of a Markov matrix un-
der the assumption that the power-iteration estimate #*) can be
expressed as a linear combination of the first two eigenvectors.

As a sidenote, let us briefly develop a related method. Rather
than using equation 8, let us define g; alternatively as:

gi = (@ = a) @ — ") = adda(he — 1) (w2)]
We define h as in equation 9, and f; now becomes

P aBAz2(A2 — 1)*(u2)?
‘ hi 042()\2 — 1)2(UQ)1'

= a22(u2)s

Therefore,
f: a2 A2
By equation 6,

LD FEHD _F

'Jl = - 042)\21_[2 =

Again, this is an approximation to 1, since it’s based on the as-
sumption that #*) can be expressed as a linear combination of
41 and d2. What is interesting here is that this is equivalent to
performing a second-order epsilon acceleration algorithm on each
component of the iterate #*). The epsilon algorithm is introduced
in [21].

5.2 Operation Count

In order for an extrapolation method such as Aitken Extrapola-
tion or Epsilon Extrapolation to be useful, the overhead should be
minimal. By overhead, we mean any costs in addition to the cost
of applying Algorithm 1 to generate iterates. The first two steps
of Algorithm 3 carry forward the Power Method for two steps, so
the operation count of the loop that follows gives us the additional
overhead for the extrapolation step itself. It is clear from inspection
that the operation count of this loop is O(n), where n is the number

function (™) = AitkenPowerMethod() {

70 =¢
repeat

Fk+1) — Af<k);

§ = [t — ¥

periodically, z*+% = Aitken(z™®);
until 6 < ¢;

}

Algorithm 4: Power Method with Aitken Extrapolation

No Extrapolafion

Aitken Extrapolation -~

0.1 +

L1 residual

0.01 |

0.001 - - -
0 50 100 150 200

of iterations

Figure 2: Comparison of convergence rate for unacceler-
ated Power Method and Aitken Extrapolation on the STAN-
FORD.EDU dataset, for ¢ = 0.99. Extrapolation was applied
every 10th iteration.

of pages in the Web. The additional operation count of one extrap-
olation step is less than the operation count of a single iteration of
the Power Method, and since Aitken Extrapolation may be applied
only periodically, we say that Aitken Extrapolation has minimal
overhead. In our implementation, the additional cost of each ap-
plication of Aitken Extrapolation was negligible — about 1% of the
cost of a single iteration of the Power Method (e.g., 1% of the cost
of Algorithm 1).

5.3 Resultsand Discussion

In Figure 2, we show the convergence of the Power Method
with Aitken Extrapolation applied once at the 10th iteration, com-
pared to the convergence of the unaccelerated Power Method for
the STANFORD.EDU dataset. The z-axis denotes the number of
times a multiplication AZ occurred; e.g., the number of times Al-
gorithm 1 was needed. Note that there is a spike at the acceler-
ation step, but speedup occurs nevertheless. This is because the
second eigenvalue of the Web matrix is likely complex. If the sec-
ond eigenvalue A2 of A is complex, then the third eigenvalue A3
is the complex conjugate of A2. Therefore, |As| = |\2| and the
approximation given in equation 5 is a poor one.

While our approximation for us is a poor one, it has components
in the direction of the real part of us, and so subtracting it off does
speed up the convergence of the Power Method after a few itera-
tions. For ¢ = 0.99, Aitken Extrapolation takes 38% less time to
reach an iterate with a residual of 0.01. However, after this ini-
tial speedup, the convergence rate for Aitken slows down, so that
to reach an iterate with a residual of 0.002, the time savings drops
to 13%. For lower values of ¢, Aitken provided much less benefit.
Since there is a spike in the residual graph, if Aitken Extrapola-
tion is applied too often, the power iterations will not converge.
For these reasons, Aitken and Epsilon Acceleration are not as suit-
able, for matrices whose second eigenvalue is complex, as the next

method we discuss.

In the next section, we present quadratic extrapolation, which
addresses this problem by assuming #*) can be expressed as a lin-
ear combination of the first three eigenvectors, and solving for
in closed form under this assumption.

6. QUADRATIC EXTRAPOLATION

6.1 Formulation

We develop the Quadratic Extrapolation algorithm as follows.
We assume that the Markov matrix A has only 3 eigenvectors, and
that the current iterate £*) can be expressed as a linear combina-
tion of these 3 eigenvectors. These assumptions allow us to solve
for the principal eigenvector @ in closed form using the successive
iterates (%) ..., g+,

Of course, A has more than 3 eigenvectors, and) can only
be approximated as a linear combination of the first three eigenvec-
tors. Therefore, the 4, that we compute in this algorithm is only an
estimate for the true @;. We show empirically that this estimate is a
better estimate to ; than the current iterate #*), and that our esti-
mate becomes closer to the true value of w; as k becomes larger. In
Section 6.3 we show that by periodically applying Quadratic Ex-
trapolation to the successive iterates computed in PageRank, for
values of ¢ close to 1, we can speed up the convergence of Page-
Rank by a factor of over 3.

We begin our formulation of Quadratic Extrapolation by assum-
ing that A has only three eigenvectors 1, . . ., @3 and approximat-
ing Z*) as a linear combination of these three eigenvectors.

f(k) = U1 + agls + a3ls (16)

We then define the successive iterates

gED = 4z®) an
gkt = gzt (18)
gk = gz (19)

Since we assume A has 3 eigenvectors, the characteristic polyno-
mial p4 () is given by:

pa(N) =70 + 71X + 7227 + 32> (20)

A is a Markov matrix, so we know that the first eigenvalue \; =
1. The eigenvalues of A are also the zeros of the characteristic
polynomial pa (). Therefore,

pa(l)=0=y+mn+72+7 =0 (21)

The Cayley-Hamilton Theorem states that any matrix A satisfies
it’s own characteristic polynomial p4(A) = 0 [8]. Therefore, by
the Cayley-Hamilton Theorem, for any vector z in R",

pa(A)z=0= [yol + A +7A> +134°z=0 (22)
Letting z = £,
ol +71A+v2A% +434%)7F =0 (23)
From equations 17-19,
H0Z® 4 4 FFTD 4y g kD 8 g (04)
From equation 21,

i'(k)(—%—’h—%)-F’Ylf(kH)+sz(k+2)+%f<k+3) =0 (25)

We may rewrite this as,

(f(lﬁ—l) _ f(k))’n + (f(k+2) _ f(k))WQ + (f(k+3) _ f(k))'yg =0

(26)
Let us make the following definitions:
g(kJrl) = g+ _ 2k (27)
g](k+2) = p+2) _ 2k (28)
g(k+3) = gk+3) _ gk (29)

We can now write equation 26 in matrix notation:
(gD ghm g)5 =0 (30)

We now wish to solve for . Since we’re not interested in the trivial
solution 4 = 0, we constrain the leading term of the characteristic
polynomial ~s:

v3 =1 (31)

We may do this because constraining a single coefficient of the
polynomial does not affect the zeros.> Equation 30 is therefore
written:

2

This is an overdetermined system, so we solve the corresponding
least-squares problem.

(g<k+1) g(k+2)) (ga!) _ _g(k+3) (32)

(71 > _ Y+g(k+3) (33)
Y2

where Yt is the pseudoinverse of the matrix Y = (gt**1 gh+2)),

Now, equations 31, 33, and 21 completely determine the coeffi-
cients of the characteristic polynomial p 4 () (equation 20).

We may now divide pa(\) by A—1 to get the polynomial g4 (),
whose roots are A5 and Az, the second two eigenvalues of A.

F YA+ 7222 + 433
qA ()\) = ’yo fyl)\ 321 fy3

Simple polynomial division gives the following values for 8o, 31,
and [2:

= Bo+ B+ B2\ (34)

Bo = m+y2+s (35)
B = Y+ (36)
B2 = 73 37

Again, by the Cayley-Hamilton Theorem, if z is any vector in
R",
qa(N)z = i1 (38)
where 11 is the eigenvector of A corresponding to eigenvalue 1 (the
principal eigenvector). Letting z = Z(*+1),
i = qa(N)ZFTY = [BoI + B1A + B A%EFTD (39)
From equations 17-19, we get a closed form solution for ;:
@1 = Bod* T + p17HF? 4 Bt (40)

However, since this solution is based on the assumption that A has
only 3 eigenvectors, equation 40 gives only an approximation to
U1.

Algorithms 5 and 6 show how to use Quadratic Extrapolation
in conjunction with the Power Method to get consistently better
estimates of ;.

3l.e., equation 31 fixes a scaling for .

function z* = QuadraticExtrapolation(z™*)) {
gk+1) — Af(k);

gk+2) — Af(kﬂ);

Fk+3) — Af(k+2);

forj=k+1:k+3do
7O = g9 _ z®.

end
Y = g<k+1) g<k+2));
Y3 =1

71 > _ _Y+g»(k+3);

2

Yo =~ +72+73);
Bo=71+v2+73;
B1 =72 +73;
B2 =13
o= ﬁoi,»(kﬂ) +ﬁlf(k+2) + 625(1@4-3);
}

Algorithm 5: Quadratic Extrapolation

function (™ = QuadraticPowerMethod () {
i =¢
repeat
Zk+1) — Af(k);
§ = [[t*TD — t¥||.;
periodically, Fh+3) — QuadraticEmtrapolation(5:'<k));
until § < ¢;

}

Algorithm 6: Power Method with Quadratic Extrapolation

6.2 Operation Count

The first two steps of Algorithm 6 carry forward the Power Method
for two iterations. The additional overhead of performing the ex-
trapolation step comes primarily from the least-squares computa-
tion of v1 and ~2:

(Y1) _ —Y+;J(k+3)
V2

It is clear that the other steps in this algorithm are either O(1) or
O(n) operations.

Since Y is an n x 2 matrix, we can do the least-squares solution
cheaply in just 2 iterations of the Gram-Schmidt algorithm [20].
Therefore, v, and «2 can be computed in O(n) operations. While
a presentation Gram-Schmidt is outside of the scope of this paper,
we show in Algorithm 7 how to apply Gram-Schmidt to solve for
[v172]™ in O(n) operations. Since the extrapolation step is on the
order of a single iteration of the Power Method, and since Quadratic
Extrapolation is applied only periodically during the Power Method,
we say that Quadratic Extrapolation has minimal overhead. In
our experimental setup, the overhead of a single application of
Quadratic Extrapolation is half the cost of a standard power iter-
ation (e.g., half the cost of Algorithm 1). This number includes the
cost of storing on disk the intermediate data required by Quadratic
Extrapolation (such as the previous iterates), since they may not fit
in main memory.

6.3 Resultsand Discussion

Of the algorithms we have discussed for accelerating the conver-
gence of PageRank, Quadratic Extrapolation performs the best em-
pirically. In particular, Quadratic Extrapolation considerably im-
proves convergence relative to the Power Method when the damp-

1. Compute the reduced QR factorization Y = QR using 2
steps of Gram-Schmidt.

2. Compute the vector —QTy*+3)
3. Solve the wupper triangular system R(3;) =

—QTy*+3) for (1;) using back substitution.

Algorithm 7: Using Gram-Schmidt to solve for v and ~».

1 . i i ‘
No Extrapolation —&—
Quadratic Extrapolation -+
01}
E *
S
=2 N
) .
o S
2
0.01 .
.
T,
"
"
.
*,
0.001 : \ ‘ ‘ L ‘
0 5 10 15 20 25 30 35 40

of iterations

Figure 3: Comparison of convergence rates for Power Method
and Quadratic Extrapolation on LARGEWEB for ¢ = 0.90.
Quadratic Extrapolation was applied the first 5 times that three
successive power iterates were available.

ing factor cis close to 1. We measured the performance of Quadratic
Extrapolation under various scenarios on the LARGEWEB dataset.
Figure 3 shows the rates of convergence when ¢ = 0.90; after
factoring in overhead, Quadratic Extrapolation reduces the time
needed to reach a residual of 0.001 by 23%.* Figure 4 shows the
rates of convergence when ¢ = 0.95; in this case, Quadratic Ex-
trapolation speeds up convergence more significantly, saving 31%
in the time needed to reach a residual of 0.001. Finally, in the case
where ¢ = 0.99, the speedup is more dramatic. Figure 5 shows
the rates of convergence of the Power Method and Quadratic Ex-
trapolation for ¢ = 0.99. Because the Power Method is so slow to
converge, in this case, we plot the curves until a residual of 0.01
is reached. The use of extrapolation saves 69% in time needed to
reach a residual of 0.01; i.e., the unaccelerated Power Method took
over 3 times as long as the Quadratic Extrapolation method to reach
the desired residual.

Figure 6 shows the convergence for the Power Method, Aitken
Extrapolation, and Quadratic Extrapolation on the STANFORD.EDU
dataset; each method was carried out to 200 iterations. To reach a
residual of 0.01, Quadratic Extrapolation saved 59% in time over
the Power Method, as opposed to a 38% savings for Aitken Extrap-
olation.

An important observation about Quadratic Extrapolation is that
it does not necessarily need to be applied too often to achieve max-
imum benefit. By contracting the error in the current iterate along
the direction of the second and third eigenvectors, Quadratic Ex-
trapolation actually enhances the convergence of future applica-
tions of the standard Power Method. The Power Method, as dis-
cussed previously, is very effective in annihilating error compo-
nents of the iterate in directions along eigenvectors with small eigen-

4The time savings we give factor in the overhead of applying extrapolation,
and represent “wall-clock” time savings.

1 T T T T
No Extrapolation —&—
Quadratic Extrapolation -+
_ 01F %
E]
b=} *y
k.
- *‘
- o001t "5,
RV
Jﬁ*‘k
*,
*,
*,,
o
s
o,
0.001 L L L L oy L
0 10 20 30 40 50 60 70 80

of iterations

Figure 4: Comparison of convergence rates for Power Method
and Quadratic Extrapolation on LARGEWEB for ¢ = 0.95.
Quadratic Extrapolation was applied 5 times.

No Extrapolétion e
Quadratic Extrapolation -+

L1 residual

0 20 40 60 80 100 120 140
of iterations

Figure 5: Comparison of convergence rates for Power Method
and Quadratic Extrapolation when ¢ = 0.99. Quadratic Ex-
trapolation was applied all 11 times possible.

values. By subtracting off approximations to the second and third
eigenvectors, Quadratic Extrapolation leaves error components pri-
marily along the smaller eigenvectors, which the Power Method is
better equipped to eliminate.

For instance, in Figure 7, we plot the convergence when Quadratic
Extrapolation is applied 5 times compared with when it is applied
as often as possible (in this case, 14 times), to achieve a residual
of 0.001. Note that the additional applications of Quadratic Ex-
trapolation do not lead to much further improvement. In fact, once
we factor in the 0.5 iteration-cost of each application of Quadratic
Extrapolation, the case where it was applied 5 times ends up being
faster.

One thing that is interesting to note is that since acceleration may
be applied periodically during any iterative process that generates
iterates £(*) that converge to the principal eigenvector @ , it is
straightforward to use Quadratic Extrapolation in conjunction with
other methods for accelerating PageRank, such as Gauss-Seidel [2].

7. MEASURES OF CONVERGENCE

In this section, we present empirical results demonstrating the
suitability of the L, residual, even in the context of measuring con-
vergence of induced document rankings. In measuring the con-
vergence of the PageRank vector, prior work has usually relied on
6 = ||Az® — z(®]|,, the L, norm of the residual vector, for
p = 1orp =2, asan indicator of convergence. Given the intended
application, we might expect that a better measure of convergence
is the distance, using an appropriate measure of distance, between
the rank orders for query results induced by Az and z®. In par-

No Exfrapolatioﬁ
Aitken Extrapolation -
Quadratic Extrapolation -~
©
=]
b=}
(%]
o
-
-
0.001 ¢
0.0001 s ‘ ‘ ‘
0 50 100 150 200 250

of iterations

Figure 6: Comparison of convergence rates for Power Method,
Aitken Extrapolation, and Quadratic Extrapolation on the
STANFORD.EDU dataset for ¢ = 0.99. Aitken Extrapolation
was applied every 10th iteration, Quadratic Extrapolation was
applied every 15th iteration. Quadratic Extrapolation per-
forms the best by a considerable degree. Aitken suffers from
a large spike in the residual when first applied.

1 T T T T T T T
Quadratic Extrapolation (5) —+—
Quadratic Extrapolation (14) -—&-—
_ 0.1
[
=]
b=}
[
o
-
-
0.01
s
0.001 - RS,

0 5 10 15 20 25 30 35 40 45 50
of iterations

Figure 7: Comparison of convergence rates for Quadratic Ex-
trapolation on LARGEWEB for ¢ = 0.95, under two scenarios:
Extrapolation was applied the first 5 possible times in one case,
and all 14 possible times in the other. Applying it only 5 times
achieves nearly the same benefit in this case.

ticular, we define below a distance measure, KDist, based on the
Kendall’s-7 rank correlation measure, for comparing induced rank
orders. To see if the residual is a “good” measure of convergence,
we compared it to the KDist of rankings generated by Az*) and
). We show empirically that in the case of PageRank compu-
tations, when using the L1 norm, §; is nearly perfectly correlated
with the KDist distance between query results generated using the
values in Az®) and z(®,

We define the distance measure, KDist as follows. Consider two
partially ordered lists of URLs, 7 and 74, each of length m. Let U
be the union of the URLs in 7 and 7,. If § is U — 7, then let 7/
be the extension of 7, where 7' contains § appearing after all the
URLs in 7.% We extend 7, analogously to yield 7, KDist is then
defined as:

KDist(7,74) =
[{(u,v) : 7', 7, disagree on order of (u,v),u # v}|
(uh(ul =1y

In other words, KDist(r, 74) is the probability that 7’ and 7, dis-
agree on the relative ordering of a randomly selected pair of distinct

(41)

5The URLs within & are not ordered with respect to one another.

L1 Residual X
& KDist Residual ©

0.1 + 66

L1 residual vs. KDist residual

ééé

0.01 %
%@5
6665
%

s
0.001 ‘ ‘ ‘ ‘ ‘ L e
0 5 10 15 20 25 30 35 40
of iterations

Figure 8: Comparison of the L; residual vs. KDist residual of
PageRank iterates. Note that the two curves nearly perfectly
overlap, suggesting that in the case of PageRank, the easily cal-
culated L residual is a good measure for the convergence of
query-result rankings.

nodes (u,v) € U x U. An analysis of various measures based on
Kendall’s-7 for comparing top-k lists is given by Fagin etal. in [7].

To measure the convergence of PageRank iterations in terms of
induced rank orders, we measured the KDist distance between
the induced rankings for the top 1,000 results, averaged across 86
test queries, using successive power iterates for the LARGEWEB
dataset, with the damping factor ¢ set to 0.9. The average KDist
values, as well as the standard residual value 6., normalized so that
do is 1, are plotted in Figure 8. Interestingly, ¢ is almost perfectly
correlated with KDist. Fagin et al. show in [7] that distance mea-
sures based on Kendall’s-7 are bounded by a true metric, providing
insight as to why the results of Figure 8 are to be expected.

8. RELATED WORK
8.1 Fast Eigenvector Computation

The field of numerical linear algebra is a mature field, and many
algorithms have been developed for fast eigenvector computations.
However, many of these algorithms are unsuitable for this problem,
because they require matrix inversions or matrix decompositions
that are prohibitively expensive (both in terms of size and space) for
a matrix of the size and sparsity of the Web-link matrix. For exam-
ple, inverse iteration will find the principal eigenvector of A in one
iteration, since we know the first eigenvalue. However, inverse iter-
ation requires the inversion of A, which is an O(n®) operation. The
QR Algorithm with shiftsiis also a standard fast method for solving
nonsymmetric eigenvalue problems. However, the QR Algorithm
requires a QR factorization of A at each iteration, which is also an
O(n®) operation. The Arnoldi algorithm is also often used for non-
symmetric eigenvalue problems. However, the strength of Arnoldi
is that it quickly computes estimates to the first few eigenvalues.
Once it has a good estimate of the eigenvalues, it uses inverse it-
eration to find the corresponding eigenvectors. In the PageRank
problem, we know that the first eigenvalue of A is 1, since A is a
Markov matrix, so we don’t need Arnoldi to give us an estimate of
A1. For a comprehensive review of these methods, see [8].

However, there is a class of methods from numerical linear al-
gebra that are useful for this problem. We may rewrite the eigen-
problem AZ = & as the linear system of equations: (I — A)Z = 0,
and use the classical iterative methods for linear systems: Jacobi,
Gauss-Seidel, and Successive Overrelaxation (SOR). For the ma-
trix A in the PageRank problem, the Jacobi method is equivalent
to the Power method, but Gauss-Seidel is guaranteed to be faster.

This has been shown empirically for the PageRank problem [2]
for the case of Gauss-Seidel. Note, however, that to use Gauss-
Seidel, we would have to sort the adjacency-list representation of
the Web graph, so that back-links for pages, rather than forward-
links, are stored consecutively. The myriad of multigrid methods
are also applicable to this problem. For a review of multigrid meth-
ods, see [16].

8.2 PageRank

Seminal algorithms for graph analysis for Web-search were in-
troduced by Page et al. [17] (PageRank) and Kleinberg [14] (HITS).
Much additional work has been done on improving these algo-
rithms and extending them to new search and text mining tasks [4,
6, 18, 3, 19, 11]. More applicable to our work are several pa-
pers which discuss the computation of PageRank itself [10, 2, 13].
Haveliwala [10] explores memory-efficient computation, and sug-
gests using induced orderings, rather than residuals, to measure
convergence. Arasu et al. [2] uses the Gauss-Seidel method to
speed up convergence, and looks at possible speed-ups by exploit-
ing structural properties of the Web graph. Jeh and Widom [13]
explore the use of dynamic programming to compute a large num-
ber of personalized PageRank vectors simultaneously. Our work is
the first to exploit extrapolation techniques specifically designed to
speed up the convergence of PageRank, with very little overhead.

9. CONCLUSION

Web search has become an integral part of modern information
access, posing many interesting challenges in developing effective
and efficient strategies for ranking search results. One of the most
well-known Web-specific ranking algorithms is PageRank — a tech-
nique for computing the authoritativeness of pages using the hy-
perlink graph of the Web. Although PageRank is largely an of-
fline computation, performed while preprocessing and indexing a
Web crawl, before any queries have been issued, it has become in-
creasingly desirable to speed up this computation. Rapidly growing
crawl repositories, increasing crawl frequencies, and the desire to
generate multiple topic-based PageRank vectors for each crawl are
all motivating factors for our work in speeding up PageRank com-
putation.

Quadratic Extrapolation is an implementationally simple tech-
nique that requires little additional infrastructure to integrate into
the standard Power Method. No sorting or modifications to the
massive Web graph are required. Additionally, the extrapolation
step need only be applied periodically to enhance the convergence
of PageRank. In particular, Quadratic Extrapolation works by elim-
inating the bottleneck for the Power Method, namely the second
and third eigenvector components in the current iterate, thus boost-
ing the effectiveness of the simple Power Method itself.

10. ACKNOWLEDGEMENTS

This paper is based upon work supported (in part) by the Na-
tional Science Foundation under Grant No. 11S-0085896 and Grant
No. CCR-9971010.

This research was supported (in part) by the Research Collabo-
ration between NTT Communication Science Laboratories, Nippon
Telegraph and Telephone Corporation and CSLI, Stanford Univer-
sity (research project on Concept Bases for Lexical Acquisition and
Intelligently Reasoning with Meaning).

11. REFERENCES

[1] A. Aitken. On bernoulli’s numerical solution of algebraic
equations. Proc. Roy. Soc. Edinburgh, 46:289-305, 1926.

[2] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. PageRank
computation and the structure of the web: Experiments and
algorithms. In Proceedings of the Eleventh International
World Wide Web Conference, Poster Track, 2002.

[3] K. Bharat and M. R. Henzinger. Improved algorithms for
topic distillation in a hyperlinked environment. In
Proceedings of the ACM-SGIR, 1998.

[4] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg,

P. Raghavan, and S. Rajagopalan. Automatic resource
compilation by analyzing hyperlink structure and associated
text. In Proceedings of the Seventh International World Wide
Web Conference, 1998.

[5] S. Chakrabarti, M. M. Joshi, K. Punera, and D. M. Pennock.
The structure of broad topics on the web. In Proceedings of
the Eleventh International World Wide Web Conference,
2002.

[6] S. Chakrabarti, M. van den Berg, and B. Dom. Focused
crawling: A new approach to topic-specific web resource
discovery. In Proceedings of the Eighth International World
Wide Web Conference, 1999.

[7] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top &
lists. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, 2003.

[8] G. H. Golub and C. F. V. Loan. Matrix Computations. The
Johns Hopkins University Press, Baltimore, 1996.

[9] G. Grimmett and D. Stirzaker. Probability and Random
Processes. Oxford University Press, 1989.

[10] T. H. Haveliwala. Efficient computation of PageRank.
Sanford University Technical Report, 1999.

[11] T. H. Haveliwala. Topic-sensitive PageRank. In Proceedings
of the Eleventh International World W de Web Conference,
2002.

[12] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke.
Webbase: A repository of web pages. In Proceedings of the
Ninth International World Wide WWeb Conference, 2000.

[13] G. Jeh and J. Widom. Scaling personalized web search.
Sanford University Technical Report, 2002.

[14] J. Kleinberg. Authoritative sources in a hyperlinked
environment. In Proceedings of the ACM-S AM Symposium
on Discrete Algorithms, 1998.

[15] J. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. The web as a graph: Measurements, models,
and methods. In Proceedings of the International Conference
on Combinatorics and Computing, 1999.

[16] U. Krieger. Numerical solution of large finite markov chains
by algebraic multigrid techniques. In Proceedings of the 2nd
International Workshop on the Numerical Solution of
Markov Chains, 1995.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the web.
Sanford Digital Libraries Working Paper, 1998.

[18] D. Rafiei and A. O. Mendelzon. What is this page known
for? Computing web page reputations. In Proceedings of the
Ninth International World Wide WWeb Conference, 2000.

[19] M. Richardson and P. Domingos. The Intelligent Surfer:
Probabilistic Combination of Link and Content Information
in PageRank, volume 14. MIT Press, Cambridge, MA, 2002.

[20] L. N. Trefethen and D. Bau. Numerical Linear Algebra.

SIAM Press, Philadelphia, 1997.
[21] P. Wynn. On the convergence and stability of the epsilon

algorithm. SAM Journal of Numerical Analysis, 33:91-122,
1966.

