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Abstract

While phrase-based statistical machine trans-
lation systems currently deliver state-of-the-
art performance, they remain weak on word
order changes. Current phrase reordering
models can properly handle swaps between
adjacent phrases, but they typically lack the
ability to perform the kind of long-distance re-
orderings possible with syntax-based systems.
In this paper, we present a novel hierarchical
phrase reordering model aimed at improving
non-local reorderings, which seamlessly in-
tegrates with a standard phrase-based system
with little loss of computational efficiency. We
show that this model can successfully han-
dle the key examples often used to motivate
syntax-based systems, such as the rotation of
a prepositional phrase around a noun phrase.
We contrast our model with reordering models
commonly used in phrase-based systems, and
show that our approach provides statistically
significant BLEU point gains for two language
pairs: Chinese-English (+0.53 on MT05 and
+0.71 on MT08) and Arabic-English (+0.55
on MT05).

1 Introduction

Statistical phrase-based systems (?; ?) have consis-
tently delivered state-of-the-art performance in re-
cent machine translation evaluations, yet these sys-
tems remain weak at handling word order changes.
The re-ordering models used in the original phrase-
based systems penalize phrase displacements pro-
portionally to the amount of nonmonotonicity, with
no consideration of the fact that some words are
far more likely to be displaced than others (e.g., in
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Figure 1: Phase orientations (monotone, swap, discontin-
uous) for Chinese-to-English translation. While previous
work reasonably models phrase reordering in simple ex-
amples (a), it fails to capture more complex reorderings,
such as the swapping of “of the region” (b).

English-to-Japanese translation, a verb should typi-
cally move to the end of the clause).

Recent efforts (?; ?; ?) have directly addressed
this issue by introducing lexicalized reordering mod-
els into phrase-based systems, which condition re-
ordering probabilities on the words of each phrase
pair. These models distinguish three orientations
with respect to the previous phrase—monotone (M),
swap (S), and discontinuous (D)—and as such are
primarily designed to handle local re-orderings of
neighboring phrases. Fig. 1(a) is an example where
such a model effectively swaps the prepositional
phrase in Luxembourg with a verb phrase, and where
the noun ministers remains in monotone order with
respect to the previous phrase EU environment.

While these lexicalized re-ordering models have
shown substantial improvements over unlexicalized
phrase-based systems, these models only have a
limited ability to capture sensible long distance re-
orderings, as can be seen in Fig. 1(b). The phrase



of the region should swap with the rest of the noun
phrase, yet these previous approaches are unable to
model this movement, and assume the orientation of
this phrase is discontinuous (D). Observe that, in
a shortened version of the same sentence (without
and progress), the phrase orientation would be dif-
ferent (S), even though the shortened version has es-
sentially the same sentence structure. Coming from
the other direction, such observations about phrase
reordering between different languages are precisely
the kinds of facts that parsing approaches to machine
translation are designed to handle and do success-
fully handle (?; ?; ?).

In this paper, we introduce a novel orientation
model for phrase-based systems that aims to bet-
ter capture long distance dependencies, and that
presents a solution to the problem illustrated in
Fig. 1(b). In this example, our reordering model
effectively treats the adjacent phrases the develop-
ment and and progress as one single phrase, and the
displacement of of the region with respect to this
phrase can be treated as a swap. To be able iden-
tify that adjacent blocks (e.g., the development and
and progress) can be merged into larger blocks, our
model infers binary (non-linguistic) trees reminis-
cent of (?; ?). Crucially, our work distinguishes
itself from previous hierarchical models in that it
does not rely on any cubic-time parsing algorithms
such as CKY (used in, e.g., (?)) or the Earley al-
gorithm (used in (?)). Since our reordering model
does not attempt to resolve natural language ambi-
guities, we can effectively rely on (linear-time) shift-
reduce parsing, which is done jointly with left-to-
right phrase-based beam decoding and thus intro-
duces no asymptotic change in running time. As
such, the hierarchical model presented in this pa-
per maintains all the effectiveness and speed advan-
tages of statistical phrase-based systems, while be-
ing able to capture some key linguistic phenomena
(presented later in this paper) which have motivated
the development of parsing-based approaches. We
also illustrate this with results that are significantly
better than previous approaches, in particular the
lexical reordering models of Moses, a widely used
phrase-based SMT system (?).

This paper is organized as follows: the training of
lexicalized re-ordering models is described in Sec-
tion 3. In Section ??, we describe how to combine

shift-reduce parsing with left-to-right beam search
phrase-based decoding with the same asymptotic
running time as the original phrase-based decoder.
We finally show in Section ?? that our approach
yields results that are significantly better than previ-
ous approaches for two language pairs and different
test sets.

2 Lexicalized Reordering Models

We compare our re-ordering model with related
work (?; ?) using a log-linear approach common
to many state-of-the-art statistical machine transla-
tion systems (?). Given an input sentence f, which is
to be translated into a target sentence e, the decoder
searches for the most probable translation ê accord-
ing to the following decision rule:

ê = argmax
e

{
p(e|f)

}
(1)

= argmax
e

{ J

∑
j=1

λ jh j(f,e)
}

(2)

h j(f,e) are J arbitrary feature functions over
sentence pairs. These features include lexicalized
re-ordering models, which are parameterized as
follows: given an input sentence f, a sequence of
target-language phrases e = (e1, . . . ,en) currently
hypothesized by the decoder, and a phrase alignment
a = (a1, . . . ,an) that defines a source f ai

for each
translated phrase ei, these models estimate the prob-
ability of a sequence of orientations o = (o1, . . . ,on)

p(o|e, f) =
n

∏
i=1

p(oi|ei, f ai
,ai−1,ai), (3)

where each oi takes values over the set of possi-
ble orientations O = {M,S,D}.1 The probability is
conditioned on both ai−1 and ai to make sure that
the label oi is consistent with the phrase alignment.
Specifically, probabilities in these models can be
greater than zero only if one of the following con-
ditions is true:

• oi = M and ai −ai−1 = 1

• oi = S and ai −ai−1 = −1
1We note here that the parameterization and terminology

in (?) is slightly different. We purposely ignore these differ-
ences in order to enable a direct comparison between Tillman’s,
Moses’, and our approach.
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Figure 2: Occurrence of a swap according to the three
orientation models: word-based, phrase-based, and hier-
archical. Black squares represent word alignments, and
gray squares represent blocks identified by phrase-extract.
In (a), block bi = (ei, fai) is recognized as a swap accord-
ing to all three models. In (b), bi is not recognized as a
swap by the word-based model. In (c), bi is recognized
as a swap only by the hierarchical model.

• oi = D and |ai −ai−1| 6= 1

At decoding time, rather than using the log-
probability of Eq. 3 as single feature function, we
follow the approach of Moses, which is to assign
three distinct parameters (λm,λs,λd) for the three
feature functions:

• fm = ∑
n
i=1 log p(oi = M| . . .)

• fs = ∑
n
i=1 log p(oi = S| . . .)

• fd = ∑
n
i=1 log p(oi = D| . . .).

There are two key differences between this work
and previous orientation models (?; ?): (1) the esti-
mation of factors in Eq. 3 from data; (2) the segmen-
tation of e and f into phrases, which is static in the
case of (?; ?), while it is dynamically updated with
hierarchical phrases in our case. These differences
are described in the two next sections.

3 Training

We present here three approaches for computing
p(oi|ei, f ai

,ai−1,ai) on word-aligned data using rel-
ative frequency estimates. We assume here that
phrase ei spans the word range s, . . . , t in the target
sentence e and that the phrase f ai

spans the range
u, . . . ,v in the source sentence f. All phrase pairs in
this paper are extracted with the phrase-extract algo-
rithm (?), with maximum length set to 7.

Word-based orientation model: This model an-
alyzes word alignments at positions (s−1,u−1)
and (s−1,v+1) in the alignment grid shown in

ORIENTATION MODEL oi = M oi = S oi = D
word-based (Moses) 0.1750 0.0159 0.8092

phrase-based 0.3192 0.0704 0.6104
hierarchical 0.4878 0.1004 0.4116

Table 1: Class distributions of the three orientation mod-
els, estimated from 12M words of Chinese-English data
using the grow-diag alignment symmetrization heuristic
implemented in Moses, which is similar to the ‘refined’
heuristic of (?).

Fig. 2(a). Specifically, orientation is set to oi =
M if (s− 1,u− 1) contains a word alignment and
(s−1,v+1) contains no word alignment. It is set to
oi = S if (s−1,u−1) contains no word alignment
and (s−1,v+1) contains a word alignment. In all
other cases, it is set to oi = D. This procedure is
exactly the same as the one implemented in Moses.2

Phrase-based orientation model: The model
presented in (?) is similar to the word-based ori-
entation model presented above, except that it an-
alyzes adjacent phrases rather than specific word
alignments to determine orientations. Specifically,
orientation is set to oi = M if an adjacent phrase pair
lies at (s−1,u−1) in the alignment grid. It is set to
S if an adjacent phrase pair covers (s−1,v+1) (as
shown in Fig. 2(b)), and is set to D otherwise.

Hierarchical orientation model: This model an-
alyzes alignments beyond adjacent phrases. Specif-
ically, orientation is set to oi = M if the phrase-
extract algorithm is able to extract a phrase pair
at (s−1,u−1) given no constraint on maximum
phrase length. Orientation is S if the same is true
at (s−1,v+1), and orientation is D otherwise.

Table 1 displays overall class distributions accord-
ing to the three models. It appears clearly that occur-
rences of M and S are too sparsely seen in the word-
based model, which assigns more than 80% of its
probability mass to D. Conversely, the hierarchical
model counts considerably less discontinuous cases,
and is the only model that accounts for the fact that
real data is predominantly monotone.

Since D is a rather uninformative default cat-
egory that gives no clue how a particular phrase
should be displaced, we will also provide MT eval-
uation scores (in Section ??) for a set of classes

2http://www.statmt.org/moses/?n=Moses.AdvancedFeatures


