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This document describes Stanford University’s first
entry into a NIST MT evaluation. Our entry to the
2008 evaluation mainly focused on establishing a
competent baseline with a phrase-based system sim-
ilar to (Och and Ney, 2004; Koehn et al., 2007). In
a three-week effort prior to the evaluation, our at-
tention focused on scaling up our system to exploit
nearly all Chinese-English parallel data permissible
under the constrained track, incorporating competi-
tive language models into the decoder using Giga-
word and Google n-grams, evaluating Chinese word
segmentation models, and incorporating a document
classifier as a pre-processing stage to the decoder.

4.1 Core MT engine algorithmic approach

Our translation system contains four main compo-
nents: a phrase-based translation system, a Chinese
word segmenter, a text categorizer, and a truecaser.
The purpose of the text categorizer is to classify each

test document as either newswire or web, which al-
lows us to run our phrase-based decoder with a set of
log-linear parameters tuned on the predicted genre.
The three latter components are presented in Sec-
tion 4.2.

4.1.1 Parallel data

Our translation models were trained using almost
all of the constrained track Chinese-English data,
leaving aside only the Multiple Translation Chinese
corpus (LDC2006T04), OntoNotes (LDC2007T21),
test data from previous NIST MT evaluations
(LDC2006E43, LDC2006E38, LDC2007E59), and
the ISI Chinese-English automatically extracted par-
allel texts (LDC2007T09). We only exploited a
four-million word subset of the public version of
the FBIS corpus (LDC2003E14). In total, the par-
allel training corpus contains 237.6 million English
words and 215.4 million Chinese words.

Our DARPA GALE collaborators at IBM Re-
search provided us pre-processed and sentence-
aligned parallel data. We further removed sentence
pairs deemed inappropriate for training, in particu-
lar sentence pairs with fertility larger than nine, sen-
tences longer than 100 words, and sentences with
errorful UTF-8 encoding. All words in both source
and target language texts were downcased.

We used the test set of the 2006 evaluation
(MTO06, LDC2007ES9) for parameter tuning, and
the test set of 2005 (MTO05, LDC2006E38) as our
development test set.

4.1.2 Approach

Our phrase-based system employs a log-linear ap-
proach common to many state-of-the-art statistical



machine translation (SMT) systems (Och and Ney,
2004). Given an input Chinese sentence f, which is
to be translated into an English sentence e, the de-
coder searches for the most probable translation €
according to the following decision rule:

M
é = argmax{P(e|f) } = argmax{ Z Amhi(f,€)}
€ ¢ m=1
1

hm(f,e) are M arbitrary feature functions over sen-
tence pairs, such as translation probabilities. The
search is performed with the Moses decoder (Koehn
et al., 2007).

While our general research direction is to apply
feature functions based on deep linguistic analy-
sis, the work for this submission concentrated on
features yielding a competent baseline phrase-based
SMT system, given the relatively short time at our
disposal before the evaluation. We finally incorpo-
rated the following 15 feature functions:

e Two phrase translation probabilities
P, (elf) and P, (fle), computed using the
(unsmoothed) relative frequency estimate

P,(2|f) = count(e, f)/ Zcount e.f), @

where f and e constitute a pair of aligned
phrases.

e Two lexical translation probabilities
Pix(e|f,a) and P..(f|e,a), similar to those
presented in (Koehn et al., 2003):

~iggrean 2, 7e7)
(3)

where n is the length of the phrase e, and a is
the internal word alignment between € and f.!

IDIEX e|f7

e Six lexicalized phrase re-ordering proba-
bilities, which distinguish three types of re-
orderings (monotone, swap, and discontinuous)

I Distinct instances of a given phrase pair (2,f) may be ob-
served with different internal alignments. Similarly to Moses,
and in contrast to (Koehn et al., 2003), we select in such a case
the most frequent alignment. Since our feature extraction im-
plementation differs from the one of Moses in the way it breaks
ties between alignment counts, about 0.3% of our phrases have
lexical translation probabilities that differ from the ones com-
puted by Moses, but this does not impact MT performance.

and model both left-to-right and right-to-left
re-orderings, and thus define six features func-
tions for each phrase pair. We applied Laplace
smoothing to lexicalized re-ordering probabili-
ties, with A = 0.5.

e Two language models, from Gigaword and
Google n-grams.

e Word penalty as in (Koehn et al., 2007).
e Phrase penalty as in (Koehn et al., 2007).

e Linear reordering penalty as defined in
(Koehn et al., 2007).

The weights of these feature functions were set
using minimum error rate training (MERT) (Och,
2003). We divided our tuning set (MT06) into two
sets—newswire stories and newsgroup messages—
and discarded all other genres (broadcast news). We
ran MERT on each set, and used newswire MERT
parameters for decoding documents classified as
‘newswire’, and used newsgroup MERT parameters
for decoding documents classified as ‘web’. In each
case, we ran MERT twice: once with only one lan-
guage model (Gigaword and parallel data), and sec-
ond time with the addition of a Google language
model (see Section 4.1.4). The effect of the Google
language model is discussed in the results section
(Section 4.5).

4.1.3 Phrase tables

This section describes the computation of phrase
translation and lexicalized re-ordering probabilities,
which we computed for all observed phrases no
longer than seven words on each side. First, we
ran GIZA++ (Och and Ney, 2003) to produce word
alignments for the entire data set. We ran five itera-
tions of IBM Model 1 (Brown et al., 1993), five iter-
ations of the homogeneous HMM model described
in (Vogel et al., 1996), and three iterations of IBM
Model 4. Note that training with IBM Model 3 was
entirely skipped.

We built our own implementation of phrase-
extract (Och, 2002), which, as opposed to Moses,
builds phrase tables directly tailored to specific de-
velopment and test sets. This considerably reduces
the burden of computing normalization counts, since



our phrase extraction system can generally fit all rel-
evant phrase pairs into memory (as opposed to, e.g.,
Moses, which sorts large collections of phrases on
disk to compute normalization counts). This en-
abled us to quickly experiment with many phrase
extraction heuristics. On a 41 million English
word subset of the parallel data, we found that
the alignment symmetrization that worked best with
our system is the grow-diag heuristic (Koehn et al.,
2007). We pruned phrase tables produced with this
heuristic by deleting all phrases that do not sat-
isfy Py (e|f) > .0001. This filtering typically yields
phrase tables 2 to 3 times smaller, with generally lit-
tle impact on MT performance (0.2% BLEU reduc-
tion at worst). Since all our language models are fil-
tered against the target side of our phrase tables, this
deletion of very unlikely translations allowed us to
considerably reduce n-gram count thresholds—i.e.,
the number of times each n-gram must be observed
to be included in the language model—and to inci-
dentally capitalize more on n-grams that are likely
to be seen at decoding time.

4.14 Language models

Our language models were trained using Google
n-grams (LDC2006T13) and the Xinhua News and
Agence France-Presse (AFP) sections of English Gi-
gaword, third edition (LDC2007T07). Since the
test periods of our development sets (MTO5 and
MTO06) overlap with the Gigaword corpus, we man-
ually removed stories released between November
2004 and February 2005, and between January and
March 2006. The tokenization of both Gigaword
and Google n-grams was roughly matched to the to-
kenization of the target side of the parallel texts.

Our system for this submission incorporates two
language models built using the SRI language mod-
eling toolkit (SRILM) (Stolcke, 2002). The first
model was trained using stories from Xinhua News
and AFP, as well as the entire target-language side
of the parallel data (Section 4.1.1), which represent
a total of about 970 million English tokens, includ-
ing punctuations. We built a back-off 5-gram lan-
guage model smoothed with the modified Kneser-
Ney algorithm (Chen and Goodman, 1996). Due to
memory constraints (16GB of RAM), we discarded
all 4-grams that occurred only once and all 5-grams
that occurred only once or twice.

We also experimented with the four remaining
sections of the Gigaword corpus (Associated Press
Worldstream, Central News Agency, Los Angeles
Times, and New York Times), and built mixture
language models combining the different sources
(mixture parameters were tuned to either maximize
BLEU or minimize perplexity). Despite our obser-
vation that these sections helped significantly reduce
the perplexity of the English references of our tuning
set (6.7% relative perplexity reduction), these extra
sources did not yield any significant improvement on
the development test set (MTO5) in terms of BLEU
scores, and so we didn’t use them.

We built a second language model using Google
n-grams. Since the Google collection does not con-
tain n-grams with counts lower than 40, it is imprac-
tical to utilize smoothing techniques (such as Good-
Turning or Kneser-Ney) that rely on ‘“counts-of-
counts” statistics to estimate the probability of rare
events. We relied instead on Jelinek-Mercer smooth-
ing (Bahl et al., 1983) (known as a “count-based”
language model in SRILM), which implements a
mixture of count-based maximum-likelihood esti-
mators. In our experiments, the n-grams of each
order were partitioned by counts into 15 buckets
(each bearing a unique interpolation weight), and
maximum-likelihood estimates typically converged
after 3 to 5 iterations of expectation-maximization
(EM) (Dempster et al., 1977). Since SRILM falls
short of explicitly enumerating all n-grams of count-
based language models—inasmuch as such models
only contain a few distinct interpolation weights—
we converted our count-based language model into
the kind of back-off language model expected by our
decoder (an ARPA file).2 Since building a back-off
language model requires loading all n-grams at once
into memory, we limited our use to n-grams up to or-
der 3 and removed trigrams that appeared less than
300 times in the Google collection.

20ne way to achieve this is to create an intermediate back-
off ARPA language model containing all n-grams of interest
(e.g., those that may be applicable at decoding time), then
rescore this model with our count-based language model using
ngram -rescore-ngramin SRILM.



Lexicon-based Features

(1.1 LBegin(Cn)an € [_27 1]
(12) LMid(Cn)anG [7271]
(1.3)  Lgna(Cyp)yn € [—2,1]
(1.4)  Lgna(C-1) + Lgna(Co) + Lgna(Cr)
(1.5)  Lgna(C2) + Lgna(C-1)
+Lpegin(Co) + Latia(Co)
(1.6)  Lgna(C—2) +Lgna(C-1)
+LBegin (C, 1 )
+LBegin (CO) + Lyt (CO)
Linguistic Features
21) Cpnel[-21]
22) Gy 1Cpne-1,1]
(2.3) Cp2Cyne|l,2]
(2.4)  Single(Cy),n € [—2,1]
(2.5) UnknownBigram(C_Cyp)
(2.6)  ProductiveAf fixes(C_1,Cp)
(2.7)  Reduplication(C_y,Cy),n € [0,1]

Table 1: Features for the Chinese segmenter.

4.2 Critical additional features and tools used

4.2.1 Chinese word segmenter

In Section 4.1.1 we mentioned that we used the
parallel data provided by IBM Research. However,
instead of use the original segmentation, we trained
a segmenter with features for better segmentation
consistency. Our segmenter is using a CRF model
(Lafferty et al., 2001), and we treated Chinese word
segmentation as a binary decision task where each
character is labeled either as the first character of a
word or not (Peng et al., 2004).

The features we are using are listed in Table 1.
The segmenter was trained on all of Chinese Tree-
bank (LDC2005TO01). In order to evaluate the per-
formance of the segmenter, we also trained on the
SIGHAN Bakeoff 2006 training data (the UPUC
data) and evaluate on the test data. The overall
F measure was 0.940. The OOV recall rate was
0.729, and the IV recall rate is 0.970, which is very
close to the best result of SIGHAN Bakeoff 2006.

4.2.2 Text categorizer

The text categorizer is a linear regression classi-
fier trained to distinguish three genres: newswire,
newsgroups, and weblogs. At test time, the news-
group and weblog categories were merged into
one ‘web’ class (training directly a two-way clas-
sifier turned out to particularly less effective).

Data sources for training included: 600 documents
randomly selected from Xinhua News stories of
2006, and all newsgroup and weblog documents
in LDC2006E34, LDC2006E24, LDC2006E92,
LDC2006E85, and LDC2005E83 (GALE data).
Features included average sentence length and all
words of the document. We tried several other fea-
tures, which did not help.

4.2.3 Truecaser

Our truecaser is a CRF classifier with four classes:
all lowercase (LC), first letter uppercase (UC), all
letters uppercase (CA), and mixed case word (MC)
(cf. (Lita et al., 2003)). For building the CRF clas-
sifier, we used a subset of the features used in the
Stanford Named Entity Recognizer (Finkel et al.,
2005). Our truecaser was trained on LDC2005E83,
LDC2006E24, LDC2003E14, and part of the Xin-
hua data (LDC2007T07).

After running the truecaser, we applied 4 different
post-processing steps. First, we disambiguate the
mixed case words by looking up a list we extracted
from a larger set of training data. Second, since the
training data we are using actually put many city
names into all uppercase (CA), we post-processed
those cases to make them in the UC category. Third,
we made the first non-punctuation word of every
sentence in the UC category. Fourth, we capital-
ized the first sentence of newswire data (categorized
by our categorization tool. We tested the truecaser
on the four references of MT06 newswire and news-
group data. The total per-word accuracy is 96.13%.
To further analyze the truecaser, we look at accu-
racy for each class: 99.73% for MC, 98.67% for LC,
82.37% for CA, 81.79% for UC. We can see from
the results that the worst performing category is UC,
in which 18.02% were mistaken as LC. This is the
place where out truecaser needs to be improved the
most. Finally the spacing between tokens was nor-
malized to resemble standard English spacing rules.

4.3 Significant data pre/post-processing

We use the Chinese-English Name Entity Lists v1.0
(LDC2005T34) for Chinese person name transliter-
ation. First, we made a list of Chinese family name
characters by taking the Chinese names in Who-Is-
Who-China name list, excluding entries that have
punctuations, and taking the first characters that ap-



BLEU[%]

Set Google LM | newswire  web
MTO06 no 31.58 26.75
MTO06 yes 31.48 27.68
MTO05 no 32.90 -
MTO05 yes 32.92 -
MTO8 no 28.43 19.53
MTO08 yes 29.24 20.39

Table 2: Machine translation performance by genre
(true genre, not the genre predicted by our classifier).
The “Google LM” column indicates whether or not the
Google language model was incorporated into the de-
coder. BLEU scores were computed with the script
mteval-vllb.pl available from NIST.

uncased
Set Google LM | BLEU[%] BLEU[%]
MTO05 no 32.90 35.01
MTO05 yes 32.92 34.96
MTO08 no 24.63 26.30
MTO08 yes 25.47 27.23

Table 3: Test set machine translation performance.

pear more than 63 times in the name lists. We ob-
tained a list of 87 common Chinese first names by
doing this. With this list, we then get a list of
24,382 Chinese names from the Who-Is-Who-China
names with those common family names. We ex-
tract the most common transliteration of the charac-
ters present in this list.

When dealing with unknown words, if they were
of length 2 or 3, started with a character in our
common Chinese family name list, and if we have
transliteration mapping for every character of that
unknown word, we will look up our mapping to
transliterate it.

4.4 Other data used
We used no data outside the prescribed LDC data.

4.5 Results

Results by genre for the tuning set (MT06), develop-
ment test set (MTO05), and evaluation test set (MTOS)
are displayed in Table 2. Overall test set perfor-
mance is displayed in Table 3. As mentioned previ-
ously, we ran MERT on MTO06 to generate two sets
of weights for each genre, one with the Google LM
and one without. Models tuned on web data tend to
favor the Google LM more than for newswire data,
as shown in Table 4. We then relied on our text

Feature name newswire web
Pu(fle) .0333 .0060
Pulelf) .0256 .0727
P, (fle) .0343 .0818
Piex(elf) .0275 .0169
primary LM .0641 .0568
Google LM .0156 .0289
linear re-ordering .0192 .0556
forward monotone .0679 .0834
forward swap .0773  —.0081
forward discontinuous .0942 0794
backward monotone .1004 .0416
backward swap .0299 .0996
backward discontinuous .1005 .0390
word penalty —.2083 —.2496
phrase penalty 1018 .0808

Table 4: MERT parameters for newswire and web genres.

MTO08 newswire (true)  web (true)
newswire (predicted) 67 4
web (predicted) 9 29

Table 5: Text categorization confusion matrix. Classifi-
cation accuracy on MTOS is 88.1%.

categorizer to classify each document of MT06 and
MTOS as either ‘newswire’ or ‘web’, and then used
MERT parameters tuned for the predicted genre.
Text categorization performance is shown in Table 5.

We can see from Table 2 that the Google LM pro-
vides a significant improvement on web data (0.93
and 0.86 BLEU points on MT06 and MTOS, re-
spectively). While the Google LM did not provide
any significant improvement on the newswire sec-
tions of MTO5 and MTO06, we nevertheless decided
to incorporate this language model into our primary
newswire system. We hypothesized that one reason
the Google LM did little to improve the Gigaword
LM on newswire data was that documents of Giga-
word used for training are close to the MTO05 and
MTO6 test periods (some training documents were
released just one month prior to or after the two test
periods), and that the situation would be different on
true test data (MTOS8). This decision turned out to
be good, since MERT parameters with the Google
LM (primary submission) outperform MERT pa-
rameters without Google LM by 0.84 BLEU point
on newswire.

5 Key difference in contrastive systems

No contrastive system was submitted.
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