
What’s needed for lexical databases? Experiences with Kirrkirr

Christopher D. Manning
Stanford University

Department of Computer Science, Gates 4A
Stanford CA 94305-9040, USA

manning@cs.stanford.edu

Kristen Parton
Stanford University

Department of Computer Science, Gates 4A
Stanford CA 94305-9040, USA
kparton@stanford.edu

Abstract

This paper discusses what is required
from dictionary databases, and one
approach, based on experience with
Kirrkirr , a dictionary browser
originally developed for Warlpiri, an
Indigenous Australian language. The
paper suggests that there is something
of a disconnect between the data access
needs of lexical databases and most
work on semi-structured databases
within the database community.

1 Introduction

This paper discusses what is desirable or
necessary in the way of database technology in
order to provide browsing interfaces to lexical
databases. We are particularly concerned with
interfaces that are usable by speakers of indige-
nous languages, although many of the issues
extend to most lexicons. The discussion is based
in part on our development of Kirrkirr , a dic-
tionary browser for indigenous languages which
has been developed over the last several years,
and used with a large dictionary for Warlpiri, an
Australian language. Before discussing the
general issues in lexical databases, we would
like to frame the problem by saying a little bit
more about the context of Kirrkirr.

The aim of Kirrkirr is to let people explore
the richness of the lexicon of a language – how
words relate to one another, group in semantic
fields and so on. In particular, we wish to make
this facility available to a broad audience: indi-
genous language speakers, learners, school
teachers and others, as well as linguists. At the

time the Kirrkirr project was begun (1998), lin-
guists accessed and maintained the large
Warlpiri dictionary (Laughren and Hale, forth-
coming) through a text editor, while other
groups had no effective method of access.1 In
particular, all available print and online
dictionaries were organized as Warlpiri-English
dictionaries, and many – most vocally non-
Warlpiri speaking white school teachers – felt
the lack of an English-Warlpiri dictionary.

A picture of the Kirrkirr interface appears in
Fig. 1. The program has met with at least modest
success as a tool people actually can and do use:

Hi Jane and Chris, Just letting you know
that two literacy workers here (Rhonda
and Nanginarra) use Kirrkirr quite a lot
now, for checking spelling when checking
written work including transcriptions.
They switch between windows, Word /
Kirrkirr or Pagemaker / Kirrkirr. Rhonda
uses it without my prompting or
involvement, Nanginarra still needs help
moving between windows, but once she's
going she checks everything.

Today working with a teacher we came to
a word she didn't know and she said "look
it up on that thing" and she read through
and discussed the synonyms she did
know, so there's the beginnings of an
impact. I can't say that in the past she
wouldn't have reached for the paper
dictionary – I didn't record paper
dictionary usage pre-Kirrkirr, shame.
Yesterday a teacher used it as a reading

1 There is a separate small printed Warlpiri dictionary
(Hale 1995), and printed dictionaries of several of the
Warlpiri dialects, but these are fairly limited in their lexical
coverage.

Fig. 1. One view of Kirrkirr

skills development exercise and enjoyed
reading the tree then the Warlpiri
examples for about 30 mins. Ngulajuku.

This has required: a lot of careful HCI work to
make the system approachable to, accessible to,
and easily usable by children and novices; the
traditional concerns of software engineering;
considerable work in somewhat unexpected
directions (such as getting the application to
perform well on a 640x480 screen – many
computers get set to this resolution as the easiest
way to compensate for the poor levels of vision
which are unfortunately common among
Indigenous Australians); and finally work on
having the necessary sort of lexical database to
support the functionality that we seek to
provide.

Here, we focus on this last area. We first dis-
cuss general issues of how dictionary databases
connect to and differ from other work in semi-

structructed databases, and secondly we provide
some more details of the data model and data
access in Kirrkirr.

2 Dictionary data access

While dictionaries have sometimes been
represented in, and accessed through, regular
relational databases (for example, Nathan and
Austin 1992), dictionaries are best thought of as
semi-structured data. While there is consid-
erable systematicity to dictionary entries, there
are numerous variant formats that are used to
accommodate the perceived lexicographic needs
of different entries, and in practice there is
usually no strict schema control to stop a
lexicographer from using variant or hybrid
structures. To take just one example, the Warl-
piri dictionary has a SRC element, for giving the
source from which something is drawn, and
lexicographers feel that it is completely appro-

priate to attach this element wherever it is
needed – to an example, a synonym, a comment,
even to someone’s proposal as to how a word
should be glossed.

In recent years, there has been much work on
semi-structured data and databases for such data
(inter alia, Abiteboul et al. 1999). Much of it has
focused on the development of XML, although
the general issue of the treatment of semi-
structured data is more general, and predates
XML (McHugh et al. 1997). However, the term
‘semi-structured data’ spans a continuum be-
tween completely structured data, which people
have simply chosen to encode in XML, to
moderately structured data, to quite unstruc-
tured, often textual, data. Linguistic databases,
for both good and bad reasons, tend to be at this
unstructured end. Unfortunately for the builders
of linguistic databases, most of the research on
semi-structured databases has focused on the
quite structured end (McHugh et al. 1997,
Florescu and Kossman 1999), with only limited
work aimed at text databases (Rizzolo and
Mendelzon 2001).

We believe that a crucial, insufficiently
addressed observation is that in quite unstruc-
tured databases, the content of fields is also
likely to be quite free form. Because of this,
conventional database indices are of limited use.
Dictionaries contain fields like definitions,
which can only be usefully indexed by building
full text indices, using standard techniques such
as inverted files (Baeza-Yates and Ribeiro-Neto
1999). For other kinds of questions, such as the
questions linguists often want to ask (“are there
any cases of a velar between front vowels?”),
pre-indexing is even less possible. Querying
over such data is often much more effectively
addressed by regular expression searching
(perhaps because of its utility, this is not
infrequently something that linguists have
surprising expertise in, but we have in mind here
use of regular expressions on behalf of the user,
so as to make this functionality available even to
naïve users). Regular expression searching
allows one to easily make available possibilities
such as “fuzzy spelling” to allow for frequent
spelling mistakes by the user. In recent work, we
have been looking at doing online
morphological processing of the indigenous

language, which is again well handled as a finite
state transduction (Kaplan and Kay 1994).2

Conversely, with modern computer
technology, the algorithmic search issues for
dictionary databases are not particularly dire,
certainly not when dealing with indigenous
languages. At about 10 megabytes (or 1 million
words), the Warlpiri dictionary is one of the
largest indigenous language dictionaries, with
encyclopedic definitions, and detailed grammati-
cal notes. It is also larger than the databases that
seem to be used most commonly for bench-
marking semi-structured data (DBLP, IMDB;
e.g., Rizzolo and Mendelzon 2001). With a
modern (but in no way high-end) personal
computer, this amount of data can be searched
by regular expressions in 2–3 seconds, for a
search through the entire dictionary database. In
our experience, users are quite willing and
expecting to wait that sort of length of time for a
whole database search. Although faster
performance would be available with indexing
(Rizzolo and Mendelzon 2001), from a speed
perspective, indexing is quite optional.3

Thirdly, most of the work on querying over
semi-structured databases has focused on the
highly structured end of the problem. It has
focused on indexing the path structure of the
database, and then matching and doing relational
operations over such path expressions. Often
this work has assumed the ability to do exact
matching of paths from the root and exact
matching of field contents. However, for lexical
databases, not much of the querying makes
interesting use of path expressions. Most of the
queries are primarily aimed at textual content,
delimited by XML entities, with simple
intersection or alternation, rather than complex
join conditions. Realistic search needs do not
add excessive combinatoric complexity, and are

2 Some databases, such as MySQL, do support regular
expressions, but such flexible text search facilities are not
part of standard SQL nor of any of the XML query
languages of which we are aware.
3 The Oxford English Dictionary, at around 550 Mb, does
provide a reasonable case for indexing, but even there, at a
cost to functionality. For example, the venerable PAT
search engine for the OED (Salminen and Tompa 1994)
allowed only a restricted form of wildcarding, where one
had to specify a word prefix (since this is what is easily
possible with an inverted file full text index). As a result, it
was quite impossible to pose many queries that frequently
occur (“what prefixes does the word develop occur with?”,
“how many words are there that end in –ism?”).

usually amenable to a simple linear search of
relevant entities with appropriate conjunction
and disjunction of match conditions.

Thus there is something of a disconnect
between what lexical databases need and the
research done in the semi-structured database
community (though see Barbosa et al. (2000) for
work that emphasizes the dimension of
structuredness and giving equal emphasis to
textual XML documents). The Kirrkirr project
has experimented with XML databases and
query languages. In particular, we used the
GMD IPSI XQL engine (GMD-IPSI 1999) in
the version of Kirrkirr described in (Jansz et al.
2000). The GMD IPSI database software
maintains a disk-based PDOM (persistent
document object model) over which queries are
made using XQL (XQL 1999), one of several
proposed XML query languages. However, in
practice it proved slower, and more diskspace
intensive than simply using a text XML file,
while only allowing a subset of the queries we
wanted.

In principle, we would much prefer to be
using a well-defined query language rather than
doing ad hoc indexing and retrieval from files.
But we have not been able to find an option that
offers convincing advantages across speed,
functionality, and memory footprint, so, in
practice, the latter is exactly what we do at
present. In part this is for parochial reasons, but
many of the reasons are going to recur in lexical
database projects, particularly ones aimed at
indigenous languages.4 We hope that the future
will bring semi-structured databases better
suited for textual XML files, even though the
majority of commercial interest is in highly
structured XML files (commonly actually
derived from relational databases or similar
sources).

4 We might note that there are also some purely practical
concerns that might recur. Firstly, for most indigenous
dictionary projects, it is important that the dictionary can be
given (to native speakers, linguists, etc.) at a low cost, or
preferably free, and this makes it impractical to use
expensive commercial solutions. Secondly, we have been
somewhat constrained from even exploring newer Java
object databases by the fact that we need to keep our
software compatible with JDK 1.1 so that it will run on the
(MacOS 9) Macintoshes which are used by the Northern
Territory Education Department and the linguists and
lexicographers with whom we have been working.

3 Data access in Kirrkirr

This section provides a brief description of the
current lexicon structure, indexing and lexical
access in Kirrkirr (see Manning et al. 2001 for
more on the goals and interface of Kirrkirr). The
design of Kirrkirr is general, but since we have
principally used it with one Warlpiri-English
dictionary, we will for simplicity refer to
“Warlpiri” and “English” throughout.

3.1 Original data and XML DTD

The Warlpiri dictionary data that we have used
continues to be maintained by the
lexicographers in text files (the lexicographers
are used to, and like, that format, despite all the
problems of data consistency, validation, and so
on). This dictionary data is converted to XML
by a stack-based error-correcting Perl parser.
While the error correction is heuristic with
regard to content decisions, it guarantees that the
output is both well-formed XML and valid
according to the Warlpiri dictionary DTD we
use, and allows us to feed corrections back to
the dictionary authors. The complete current
Warlpiri dictionary DTD (minus some
comments) is shown as an unnumbered figure
on the final page of this paper. It basically
follows the dictionary structure that has evolved
for the Warlpiri Dictionary (Laughren and Nash
1983), and will not be discussed in detail here.
Most elements end up as mixed content, in part
because the XML is seen as traditional text
mark-up, which merely augments the dictionary
text, and so, for example, all lists become mixed
content because there is some form of
punctuation between the list items. The DTD
could also be made more compact by using the
same entity to represent the items in all the
various kinds of crossreference lists towards the
end of the DTD; there is no good reason for us
not having done that. The dictionary is kept as
one XML file, and comprises a bit over 10
megabytes of text (one character per byte).

3.2 Indexing

Kirrkirr builds and stores on disk two (ad hoc)
indices/tables over the XML file. One is an
index by Warlpiri headwords to file positions.
This table also holds a few additional bits of
information (whether words have pictures,
sounds, are subentries) – the information that is

needed to be able to draw the scroll list down
the left hand side of the interface, since scrolling
has to be rendered quickly without XML
parsing. The second index is of English glosses,
with references to the corresponding Warlpiri
words that can be glossed in a certain way. This
is used to provide English-Warlpiri dictionary
functionality, despite the fact that the underlying
dictionary is only Warlpiri-English. While the
program is running, these indices are kept in
memory.

3.3 Data access

During operation of the program, various sorts
of data needs are dealt with in different ways.
Simple lookups, scroll list display, and searches
over headwords or glosses can be done purely
using the in-memory indices. However, most
operations require more than this. For such
operations as getting crossreferenced items for
the network display, domains for the semantic
domain browser, or pictures and sounds for the
multimedia components, the program uses the
headword index to jump to the right place in the
file, and then invokes an XML parser (the
Xerces-J parser,

� � � � � � � � � � � 	 � 	
 � � � �
 � � � �

 � � � � �
,

using SAX) to extract the required information.
It stops running at the end of a dictionary entry.
For generating formatted dictionary entries, the
same mechanism of processing the large XML
dictionary file is used, but the content is fed
together with one of a variety of XSL style files
to an XSLT processor (Xalan-J, � � � � � � � � � � � 	 � 	
 � � � �
 � � � 	 � 	 � � � �

). For doing more
complex searches across the dictionary, we
simply run regular expression matches (using
Jakarta ORO,

� � � � � � � � 	 � 	
 � 	 � 	 � 	
 � � � �
 � � �
 � �
),

across either the whole file or the entries that the
search is restricted to (found via the headword
index). Operations are similar when operating
the dictionary in English-Warlpiri mode, except
that another level of indirection is needed to
gather Warlpiri headwords that have the
required English glosses.

3.4 Genericity

How specific is this setup to our current dictio-
nary? Kirrkirr needs to know element names that
it can treat in specified ways (such as ones that
represent crossreferences). And certain things
need to be provided on a language or dictionary
specific basis (suitable fuzzy spelling rules, and

suitable XSL style files). Specifying the element
names of interest is at present hardwired, but we
believe these constants could easily be exported
to an XML metadata file that specifies how
elements of the dictionary can be mapped to
Kirrkirr functionality. We intend to do this in
future work.

4 Conclusion

In this paper we have briefly addressed the
database needs for dictionary databases, how
they are not being particularly addressed by
current work in semi-structured databases, and
have looked concretely at the data structuring
and data access methods that are used in one
particular dictionary exploration tool.

References
Abiteboul, S., Buneman, P., and Suciu, D. 2000.

Data on the Web: From Relations to Semi-
structured Data and XML. San Francisco, CA:
Morgan Kaufmann.

Baeza-Yates, R. and Ribeiro-Neto, B. 1999. Modern
Information Retrieval. Addison Wesley.

Barbosa, D., A. Barta, A. Mendelzon, G. Mihaila, F.
Rizzolo, P. Rodriguez-Gianolli. 2001. ToX - The
Toronto XML Engine, International Workshop on
Information Integration on the Web, Rio de
Janeiro.

Florescu, D. and D. Kossmann. 1999. Storing and
Querying XML Data using an RDMBS. IEEE
Data Engineering Bulletin 22: 27–34 .

GMD-IPSI 1999.
� � � � � � � � � � � � 	
 � � � 	 � � � � � � � � � � � � � �

.

Hale, K. L. 1995. An Elementary Warlpiri Diction-
ary. Revised edition. Alice Springs: IAD Press.
[Revision of 1974 and 1977 versions.]

Kevin J., J. W. Sng, N. Indurkhya, and C. Manning.
2000. Using XSL And XQL For Efficient Custo-
mised Access To Dictionary Information. Pro-
ceedings of AusWeb 2000, the Sixth Australian
World Wide Web Conference. pp 167–181.

Kaplan, R. and Kay, M. 1994. Regular models of
phonological rule systems. Computational
Linguistics, 20:331–379.

Laughren, M. and Hale, K. Forthcoming. Warlpiri
Dictionary. Department of English, University of
Queensland, ms.

Laughren, M. and Nash, D. G. 1983. Warlpiri Dic-
tionary Project: Aims, method, organisation and

problems of definition. In Papers in Australian
Linguistics No. 15: Australian Aboriginal Lexi-
cography. Pacific Linguistics, Canberra, pp. 109–
133.

Manning, C. D., K. Jansz, and N. Indurkhya. 2001.
Kirrkirr: Software for browsing and visual
exploration of a structured Warlpiri dictionary.
Literary and Linguistic Computing 16: 123–139.

McHugh, J., S. Abiteboul, R. Goldman, D. Quass,
and J. Widom. 1997. Lore: A Database Manage-
ment System for Semistructured Data. SIGMOD
Record, 26:54–66.

Nathan, D. & Austin, P. 1992. Finderlists, Computer-
generated, for bilingual dictionaries. International
Journal of Lexicography 5:1, 32–65.

Rizzolo, F. and A. Mendelzon. 2001. Indexing XML
Data with ToXin. Fourth International Workshop
on the Web and Databases (in conjunction with
ACM SIGMOD 2001). Santa Barbara, CA.

Salminen, A and F. W. Tompa. 1994. PAT Expres-
sions: an algebra for text search. Acta Linguistica
Hungarica 41(1–4): 277–306.

XQL. 1998. W3C-QL ’98 workshop paper. � � � � � � � � � � � � � � � 	
 � � �
 �

� � � � � � � � � � 	 � � 	 �
 � � �

� �
� � � � ! �
 � � 	 � � 	 �
 � � � " �
 � � � # $ �
� � � � � � � % & � � � � � � ' � � � (� � � � ' � � ' � � � � � � �
 � � �) * �
 * �) � � � � � +

" � � � � � � , & � - � & � � � � � � � � � ' , � � � � � � �
 � � � " . / 0 % $ $ � � �
� � � � ! �
 � �
 � � �

" 1 �) 	 ! � 2 � 3) * � 4
 � 3) 5 � � 6 3) � � * 3) � � * 3) � 	 � � � � * 3) � � 2 	 * � � � * 3)
" � � 	 � � � 	 �
 7 � � ! � 	
 7 � � 5 7 2 7 � + � ! � � * 7 � � + 7 * �
 * � 7

� ! 7 � * 7 � ! � 7 � � 7+ * 7 � � 5 7 � � 5 � 7 � 4 7 � � � 	 8 7 � � ! 7 * � � 7
* �
 7 �
 � 7 � 5 7+ ! � 7 � � 7 � 8 7 � ! � 7 * � $ # $ �

� � � � ! �
 � * �
 * � " � � * 7 � 	 � � � � * 7 � � 2 	 * � � � * 7
� � 	 � � � 	 �
 7 � � ! � 	
 7 � � 5 7 2 7 � + � ! � � * 7 � � + 7
� ! 7 � * 7 � ! � 7 � � 7+ * 7 � � 5 7 � � 5 � 7 � 4 7
* �
 7 �
 � 7 � 5 7+ ! � 7 � � 7 � 8 $ 9 �

� � � � ! �
 � � � + " � 	 � � � � * 7 � � 2 	 * � � � * 7
� � 	 � � � 	 �
 7 � � ! � 	
 7 � � 5 7 2 7 � + � ! � � * 7 * �
 * � 7
� ! 7 � * 7 � ! � 7 * �
 7 �
 � 7 � 5 7 + ! � 7 � � 7 � 8 $ 9 �

� � � � � � � � � � � � � � � � � � : � � � � � �
� � � � ! �
 � 1 � " ; � � � � � � $ �

� � � � � 	 * � 1 � 1
 4 ! � � � � � ; 	 ! � 	 � �
� � � � " * 4 < $; 	 ! � 	 � � �

� � � � � � � � ' � � � � � � � ' � � � � � � � � � �
� � � � ! �
 � 	 ! � 2 � " 	 ! 2 	 9 $ �
� � � � ! �
 � 	 ! 2 	 " ; � � � � � � $ �

� � � � � 	 * � 	 ! 2 	 � � � � 	 � * � � � � � ; 	 ! � 	 � � �
� � � � ! �
 � * � 4
 � " *
 � 	 9 $ �
� � � � ! �
 � *
 � 	 " ; � � � � � � $ �
� � � � � � � � � � � = ' � � � � � � �
� � � � ! �
 � 5 � � 6 " ; � � � � � � $ �
� � � � � � � � � � � � � � � � � � �
� � � � ! �
 � � � * " ; � � � � � � $ �
� �> " � � � ? � � � � � � $ � � � � � � � � � � � � �
� � � � ! �
 � � � 5 " ; � � � � � � 7 � � 7 * � � 7 � � 	
 7 � � ! $ # �
� � � � 2 � � � � � � " � ' � � � ? � � � � � � � � � � � � � � $ � � �
� � � � ! �
 � 2 " ; � � � � � � 7 2 	 $ # �
� � � � ! �
 � 2 	 " ; � � � � � � 7 * � � 7 � � 	
 7 � � 7 � � ! $ # �
� � � � � � & & � � � � � � �
� � � � ! �
 � � ! " ; � � � � � � 7 � � 7 � � 	
 7 * � � 7 � � ! $ # �
� � � � � � � � (� � � � � � � �
� � � � ! �
 � � � � 	 8 " ; � � � � � � 7 � � $ # �
� � � � � � � � � � � � � � " � � � � � � � : � � @ � $ � � �
� � � � ! �
 � � � 5 " ; � � � � � � 7 � � 7 * � � $ # �
� � � � � � � � � � � � � � " � � � � � � � � � � � � - $ � � �
� � � � ! �
 � � � 5 � " ; � � � � � � $ �
� � � � " 2 � � & & � � � � � � $ � ' � � � � � �
� � � � ! �
 � � 4 " ; � � � � � � $ �
� � � � � � & � � @ � � � �
� � � � ! �
 � � � ! " ; � � � � � � 7 * � � 7 � � $ # �
� � � � � � & � � � � � � (� � � � , ' � � � � � � � � � � � � �
� � � � ! �
 � � ! � " ; � � � � � � 7 � � 7 � � ! 7 * � � $ # �
� � � � � - � � � � � ' � � � � � � �
� � � � ! �
 � + * " ; � � � � � � 7 * � � $ # �
� � � � * � , � � � � , ' � , � � � � � � � � � � � � � � � � � � �
� � � � ! �
 � � * " ; � � � � � � $ �
� � � � � � � � � � � � � " � � � � � � � � A � � � � � � , & � - � & � � � � $ � � �
� � � � ! �
 � � � 	 � � � 	 �
 " ; � � � � � � 7 � � 7 � � ! 7 * � � $ # �
� � � � � - � & � � � ? � � � @ � - � & � � � �)

� � � � � - � & � � � � � � � � � � � � , : �
� � � � ! �
 � � + � ! � � * " � + � ! � � 7 � ! $ # �
� � � � ! �
 � � + � ! � � " � �) � � 3 $ �
� � � � ! �
 � � � " ; � � � � � � 7 < 5 7 * � � 7 � � 7 � � ! $ # �

� � � � � 	 * � � � � � � � " � � 5
 $; 	 ! � 	 � � �
� � � � ! �
 � � � " ; � � � � � � 7 � � 7 � � 	
 7 � � ! 7 * � � $ # �

� � � � * � ' � � � � � � � & � � � � � , � � �

� � � � ! �
 � * � � " ; � � � � � � $ �
� � � � � � � � � � & � � � � � � � � � A � � ' � � � � �
� � � � ! �
 � � � " ; � � � � � � 7 � � ! 7 * � � $ # �
� � � � < � � � � � � � � � � � & � � � � � � � � �
� � � � ! �
 � < 5 " ; � � � � � � $ �
� � � � * � & � � � � � � � & � � � � � � �
� � � � ! �
 � � � ! � 	
 " ; � � � � � � 7 � ! 	 $ # �
� � � � ! �
 � � ! 	 " ; � � � � � � $ �

� � � � � 	 * � � ! 	 1 �
 � � � � � � � � ; 	 ! � 	 � �
1
 4 ! � � � � � ; 	 ! � 	 � � �

� � � � � � � � � � � � � � � * � � � � � � � � , � � � � � � " ? � ? � � � � @) � � � B $ � � �
� � � � ! �
 � � 	 � � � � * " ; � � � � � � 7 � 	 $ # �
� � � � ! �
 � � 	 " ; � � � � � � $ �
� � � � ! �
 � � � 2 	 * � � � * " ; � � � � � � 7 � 2 	 $ # �
� � � � ! �
 � � 2 	 " ; � � � � � � $ �
� � � � � � � � � & ? �
� � � � ! �
 � � � 	
 " ; � � � � � � $ �
� , � � � � � � � � � � � �
� � � � ! �
 � � � " ; � � � � � � 7 � � 	 $ # �
� � � � ! �
 � � � 	 " ; � � � � � � $ �

� � � � � 	 * � � � 	 1 �
 � � � � � � � � ; � � 6 4 	 � � �
1
 4 ! � � � � � ; 	 ! � 	 � �
*
 4 ! � � � � � ; 	 ! � 	 � � �

� ' � � ' � � � � � � � � � � � � � � C
* �
 D � � � � � � &) �
 � D � � � � � � &) + ! � D � � � � � � � � � � � � � � � � & � � �
� � � � �) � 5 D � � � � � � �) � � D � � � � � � � � � � � � &) � 8 D � � � (� � ? � � � �)
* � D � ' ? � � � � �) � ! � D � � � � � � � � � � � � � � � � & � � � � � � � � � � �

� � � � ! �
 � * �
 " ; � � � � � � 7 * �
 	 $ # �
� � � � ! �
 � * �
 	 " ; � � � � � � 7 � 	 � � � � * 7 � � 2 	 * � � � * 7 * � � $ # �

� � � � � 	 * � * �
 	 1 �
 � � � � � � � � ; � � 6 4 	 � � �
1
 4 ! � � � � � ; 	 ! � 	 � �
*
 4 ! � � � � � ; 	 ! � 	 � � �

� � � � ! �
 � + ! � " ; � � � � � � 7+ ! � 	 $ # �
� � � � ! �
 � + ! � 	 " ; � � � � � � 7 � 	 � � � � * 7 � � 2 	 * � � � * 7 * � � $ # �

� � � � � 	 * � + ! � 	 1 �
 � � � � � � � � ; � � 6 4 	 � � �
1
 4 ! � � � � � ; 	 ! � 	 � �
*
 4 ! � � � � � ; 	 ! � 	 � � �

� � � � ! �
 � �
 � " ; � � � � � � 7 �
 � 	 $ # �
� � � � ! �
 � �
 � 	 " ; � � � � � � 7 � 	 � � � � * 7 � � 2 	 * � � � * 7 * � � $ # �

� � � � � 	 * � �
 � 	 1 �
 � � � � � � � � ; � � 6 4 	 � � �
1
 4 ! � � � � � ; 	 ! � 	 � �
*
 4 ! � � � � � ; 	 ! � 	 � � �

� � � � ! �
 � � 5 " ; � � � � � � 7 � 5 	 $ # �
� � � � ! �
 � � 5 	 " ; � � � � � � 7 � 	 � � � � * 7 � � 2 	 * � � � * 7 * � � $ # �

� � � � � 	 * � � 5 	 1 �
 � � � � � � � � ; � � 6 4 	 � � �
1
 4 ! � � � � � ; 	 ! � 	 � �
*
 4 ! � � � � � ; 	 ! � 	 � � �

� � � � ! �
 � � � " ; � � � � � � 7� � 	 $ # �
� � � � ! �
 � � � 	 " ; � � � � � � 7 � 	 � � � � * 7 � � 2 	 * � � � * 7 * � � $ # �

� � � � � 	 * � � � 	 1 �
 � � � � � � � � ; � � 6 4 	 � � �
1
 4 ! � � � � � ; 	 ! � 	 � � �

� � � � ! �
 � � 8 " ; � � � � � � 7 � 8 	 $ # �
� � � � ! �
 � � 8 	 " ; � � � � � � 7 � 	 � � � � * 7 � � 2 	 * � � � * 7 * � � $ # �

� � � � � 	 * � � 8 	 1 �
 � � � � � � � � ; � � 6 4 	 � � �
1
 4 ! � � � � � ; 	 ! � 	 � � �

� � � � ! �
 � * � " ; � � � � � � 7 * � 	 $ # �
� � � � ! �
 � * � 	 " ; � � � � � � $ �

� � � � � 	 * � * � 	 1 �
 � � � � � � � � ; � � 6 4 	 � � �
1
 4 ! � � � � � ; 	 ! � 	 � � �

� � � � ! �
 � � ! � " ; � � � � � � 7 � ! � 	 $ # �
� � � � ! �
 � � ! � 	 " ; � � � � � � $ �

� � � � � 	 * � � ! � 	 1 �
 � � � � � � � � ; � � 6 4 	 � � �
1
 4 ! � � � � � ; 	 ! � 	 � � �

E �

