Ling 289 – Contingency Table Statistics

Roger Levy and Christopher Manning

This is a summary of the material that we've covered on contingency tables.

- Contingency tables: introduction
- Odds ratios
- Counting, a bit of combinatorics, Binomial distribution
- Intro to hypothesis testing, degrees of freedom
- G^2 test (likelihood ratio)
- Chi-squared test
- Fisher's exact test

1. Contingency tables

There are many situations in quantitative linguistic analysis where you will be interested in the possibility of association between two categorical variables. In this case, you will often want to represent your data as a contingency table. Here's an example from a project by Roger Levy:

Parallelism in phrase coordination, [[NP1] and [NP2]]. I was interested in whether NP1 and NP2 tended to be similar to each other. As one instance of this, I looked at the patterns of PP modification of each NP (whether the NP had a PP modifier or not) in the Brown and Switchboard corpora, and came up with contingency tables like this:

		Brown					Switchboard	
		NP2					NP2	
		hasPP	noPP				hasPP	noPP
NP1	hasPP	95	52		NP1	hasPP	78	76
	noPP	174	946			noPP	325	1230

Odds and odds ratios

Given a contingency table of the form

$$\begin{array}{c|cccc}
 & Y \\
 & y_1 & y_2 \\
X & x_1 & n_{11} & n_{12} \\
 & x_2 & n_{21} & n_{22}
\end{array}$$

one of the things that's useful to talk about is how the value of one variable affects the distribution of the other. For example, the overall distribution of Y is

$$P(y_1) = \frac{n_{11} + n_{21}}{n_{11} + n_{12} + n_{21} + n_{22}} \quad P(y_2) = \frac{n_{12} + n_{22}}{n_{11} + n_{12} + n_{21} + n_{22}}$$

Alternatively we can speak of the overall odds of y_1 versus y_2 :

$$\frac{P(y_1)}{P(y_2)} = \frac{\frac{n_{11} + n_{21}}{n_{11} + n_{12} + n_{21} + n_{22}}}{\frac{n_{12} + n_{22}}{n_{11} + n_{12} + n_{21} + n_{22}}} = \frac{n_{11} + n_{21}}{n_{12} + n_{22}}$$

If $X = x_1$, then the odds for Y are just $\Omega_1^Y = \frac{n_{11}}{n_{12}}$. If the odds of Y for $X = x_2$ are greater than the odds of Y for $X = x_1$, then the outcome of $X = x_2$ increases the chances of $Y = y_1$. We can express the effect of the outcome of X on the odds of Y by the **odds ratio** (which turns out to be symmetric between X, Y):

$$\theta = \frac{\Omega_1}{\Omega_2} = \frac{n_{11}/n_{12}}{n_{21}/n_{22}} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

An odds ratio $\theta = 1$ indicates no association between the variables. For the Brown and Switchboard parallelism examples:

$$\theta_{Brown} = \frac{95 \times 946}{52 \times 174} = 9.93$$
 $\theta_{Swbd} = \frac{78 \times 1230}{325 \times 76} = 3.88$

So the presence of PPs in left and right conjunct NPs seems more strongly interconnected for the Brown (written) corpus than for the Switchboard (spoken).

2. Counting, combinatorics and binomial distribution

Take a binary variable X, let its possible values be 0 and 1. (e.g., coin flip: heads=1, tails=0; NP conjunct: hasPP=1, noPP=0, ...) Call p its probability of outcome 1. (This is called a **Bernoulli random variable** with parameter p.)

Suppose we take a variable Y to be the sum of four such Bernoulli random variables X_i , where all the X_i are independent and each has the same parameter p. By counting, the probability distribution of Y is:

$$Y \quad P(Y)$$

$$4 \quad {\binom{4}{4}} \\ 1 \times p^4$$

$$3 \quad {\binom{4}{3}} \\ 4 \times p^3 \\ (1-p)$$

$$2 \quad {\binom{4}{2}} \\ 6 \times p^2 \\ (1-p)^2$$

$$1 \quad {\binom{4}{1}} \\ 4 \times p(1-p)^3$$

$$0 \quad {\binom{4}{0}} \\ 1 \times (1-p)^4$$

This is called the four-trial **binomial** distribution with parameter p. A binomial distribution is determined by two parameters: the Bernoulli probability p, and the number of trials n. The binomial probability distribution for p, n is

$$P(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is the number of ways of choosing k out of n items.

The generalization of a binomial distribution to random variables with more than two outcomes is called a *multinomial* distribution.

3. Degrees of freedom

This cool-sounding concept means the number of things that are left to vary after you have fit parameters based on your data. It is usually used to talk about the difference between the number of parameters that are estimated between two hypotheses in an hypothesis test.

Suppose we wanted a model of the coordination example above where PP modification was independent in left and right NP, and had the same likelihood in the two conjuncts. This model has 2 parameters to estimate from the data: the marginal probabilities of NP1 having a PP and of NP2 having a PP. These determine the cell probabilities. In a slightly more general model, PP modification in the two conjuncts is independent, but the likelihood may differ by conjunct. This model requires estimating 3 probabilities: we put a probability estimate in 3 of the 4 cells, and the fourth is given by the constraint that probabilities add to 1. Note also that the latter model space contains the former (this is required for most tests that compare models using degrees of freedom (dof). The dof is the difference between the parameters estimated under the alternative and null hypotheses. dof = 3 - 2 = 1

More generally, if you have a $I \times J$ table, we can continue to follow the above logic, noting that a multinomial distribution with k possible outcomes has k-1 free parameters (since there is a constraint that all the p_i parameters sum to 1). From this, we can *derive* the way the dof of a contingency table is usually expressed:

$$dof = (IJ - 1) - [(I - 1) + (J - 1)] = IJ - I - J + 1 = (I - 1)(J - 1)$$

This is the basis for the dof in both the χ^2 and G^2 tests below.

4. Introductory hypothesis testing.

Hypothesis testing typically goes like this: think up a specific, relatively simple model for your data. Call this the **null hypothesis** H_0 . Contrast that with a more general model for your data, of which H_0 is a special case. Call this more general model H_A , the **alternative hypothesis**. You will then calculate some **statistic** of your data based on H_0 with respect to H_A . That statistic will have some probability distribution on the assumption that H_0 is correct. If the value of the statistic likelihood under H_0 is low enough, reject H_0 in favor of the more general H_A .

5. Likelihood ratio test.

With this test, the statistic you calculate for your data D is the *likelihood ratio*

$$\Lambda^* = \frac{\max P(D; H_0)}{\max P(D; H_A)}$$

that is: the ratio of the maximum data likelihood under H_0 to the maximum data likelihood under H_A . This requires that you explicitly formulate H_0 and H_A . The quantity $-2 \log \Lambda^*$ is distributed like a chi-squared distribution [see below] with **degrees of freedom** equal to the difference in the number of free parameters in H_A and H_0 . So this value can be evaluated against the χ^2 distribution to see whether the null hypothesis should be rejected. [Danger: don't apply this test when expected cell counts are low, like < 5.]

6. Chi-squared test.

Apply this test to all sorts of contingency tables, if you have a model with k parameters that predicts expected values E_{ij} for all cells. You calculate the X^2 statistic:

$$X^{2} = \sum_{ij} \frac{[n_{ij} - E_{ij}]^{2}}{E_{ij}}$$

In the chi-squared test, H_A is the model that each cell in your table has its own parameter p_i in one big multinomial distribution. Therefore, if your contingency table has n cells, then the difference in the number of free parameters between H_A and H_0 is n-k-1. Correspondingly, you can look up the p-value of your X^2 statistic for the χ^2 distribution with n-k-1 degrees of freedom. [Note that the distribution is a mathematical curve, which is different from the statistic, which is a test.]

[Danger: don't apply this test when expected cell counts are low, like < 5.]

7. Fisher's exact test.

This test applies to a 2-by-2 contingency table:

 H_0 is the model that all $marginal\ totals$ are fixed, but that the individual cell totals are not – alternatively stated, that the individual outcomes of X and Y are independent. $[H_0$ has one free parameter – why?] H_A is the model that the individual outcomes of X and Y are not independent. With Fisher's exact test, you directly calculate the exact likelihood of obtaining a result as extreme or more extreme than the result that you got. [Since it is an exact test, you can use Fisher's exact test regardless of expected and actual cell counts.]