
Ling 289 – Contingency Table Statistics

Roger Levy and Christopher Manning

This is a summary of the material that we’ve covered on contingency tables.

• Contingency tables: introduction

• Odds ratios

• Counting, a bit of combinatorics, Binomial distribution

• Intro to hypothesis testing, degrees of freedom

• G2 test (likelihood ratio)

• Chi-squared test

• Fisher’s exact test

1. Contingency tables

There are many situations in quantitative linguistic analysis where you will be inter-
ested in the possibility of association between two categorical variables. In this case,
you will often want to represent your data as a contingency table. Here’s an example
from a project by Roger Levy:

Parallelism in phrase coordination, [[NP1] and [NP2]]. I was interested in whether NP1
and NP2 tended to be similar to each other. As one instance of this, I looked at the
patterns of PP modification of each NP (whether the NP had a PP modifier or not) in
the Brown and Switchboard corpora, and came up with contingency tables like this:

Brown Switchboard
NP2 NP2

hasPP noPP hasPP noPP
NP1 hasPP 95 52 NP1 hasPP 78 76

noPP 174 946 noPP 325 1230

Odds and odds ratios

Given a contingency table of the form
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Y
y1 y2

X x1 n11 n12

x2 n21 n22

one of the things that’s useful to talk about is how the value of one variable affects the
distribution of the other. For example, the overall distribution of Y is

P (y1) = n11+n21

n11+n12+n21+n22

P (y2) = n12+n22

n11+n12+n21+n22

Alternatively we can speak of the overall odds of y1 versus y2:

P (y1)

P (y2)
=

n11+n21

n11+n12+n21+n22

n12+n22

n11+n12+n21+n22

=
n11 + n21

n12 + n22

If X = x1, then the odds for Y are just ΩY
1 = n11

n12

. If the odds of Y for X = x2 are
greater than the odds of Y for X = x1, then the outcome of X = x2 increases the
chances of Y = y1. We can express the effect of the outcome of X on the odds of Y
by the odds ratio (which turns out to be symmetric between X, Y ):

θ =
Ω1

Ω2
=

n11/n12

n21/n22
=

n11n22

n12n21

An odds ratio θ = 1 indicates no association between the variables. For the Brown
and Switchboard parallelism examples:

θBrown = 95×946
52×174

= 9.93 θSwbd = 78×1230
325×76

= 3.88

So the presence of PPs in left and right conjunct NPs seems more strongly intercon-
nected for the Brown (written) corpus than for the Switchboard (spoken).

2. Counting, combinatorics and binomial distribution

Take a binary variable X, let its possible values be 0 and 1. (e.g., coin flip: heads=1,
tails=0; NP conjunct: hasPP=1, noPP=0, . . . ) Call p its probability of outcome 1.
(This is called a Bernoulli random variable with parameter p.)

Suppose we take a variable Y to be the sum of four such Bernoulli random variables
Xi, where all the Xi are independent and each has the same parameter p. By counting,
the probability distribution of Y is:
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Y P (Y )

4 [
(

4
4

)

]1 × p4

3 [
(

4
3

)

]4 × p3(1 − p)

2 [
(

4
2

)

]6 × p2(1 − p)2

1 [
(

4
1

)

]4 × p(1 − p)3

0 [
(

4
0

)

]1 × (1 − p)4

This is called the four-trial binomial distribution with parameter p. A binomial
distribution is determined by two parameters: the Bernoulli probability p, and the
number of trials n. The binomial probability distribution for p, n is

P (k) =

(

n

k

)

pk(1 − p)n−k

where
(

n

k

)

= n!
k!(n−k)!

is the number of ways of choosing k out of n items.

The generalization of a binomial distribution to random variables with more than two
outcomes is called a multinomial distribution.

3. Degrees of freedom

This cool-sounding concept means the number of things that are left to vary after you
have fit parameters based on your data. It is usually used to talk about the difference
between the number of parameters that are estimated between two hypotheses in an
hypothesis test.

Suppose we wanted a model of the coordination example above where PP modification
was independent in left and right NP, and had the same likelihood in the two conjuncts.
This model has 2 parameters to estimate from the data: the marginal probabilities of
NP1 having a PP and of NP2 having a PP. These determine the cell probabilities. In a
slightly more general model, PP modification in the two conjuncts is independent, but
the likelihood may differ by conjunct. This model requires estimating 3 probabilities:
we put a probability estimate in 3 of the 4 cells, and the fourth is given by the constraint
that probabilities add to 1. Note also that the latter model space contains the former
(this is required for most tests that compare models using degrees of freedom (dof).
The dof is the difference between the parameters estimated under the alternative and
null hypotheses. dof = 3 − 2 = 1

More generally, if you have a I × J table, we can continue to follow the above logic,
noting that a multinomial distribution with k possible outcomes has k− 1 free param-
eters (since there is a constraint that all the pi parameters sum to 1). From this, we
can derive the way the dof of a contingency table is usually expressed:

dof = (IJ − 1) − [(I − 1) + (J − 1)] = IJ − I − J + 1 = (I − 1)(J − 1)
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This is the basis for the dof in both the χ2 and G2 tests below.

4. Introductory hypothesis testing.

Hypothesis testing typically goes like this: think up a specific, relatively simple model
for your data. Call this the null hypothesis H0. Contrast that with a more general
model for your data, of which H0 is a special case. Call this more general model HA,
the alternative hypothesis. You will then calculate some statistic of your data
based on H0 with respect to HA. That statistic will have some probability distribution
on the assumption that H0 is correct. If the value of the statistic likelihood under H0

is low enough, reject H0 in favor of the more general HA.

5. Likelihood ratio test.

With this test, the statistic you calculate for your data D is the likelihood ratio

Λ∗ =
max P (D; H0)

max P (D; HA)

that is: the ratio of the maximum data likelihood under H0 to the maximum data
likelihood under HA. This requires that you explicitly formulate H0 and HA. The
quantity −2 log Λ∗ is distributed like a chi-squared distribution [see below] with de-

grees of freedom equal to the difference in the the number of free parameters in HA

and H0. So this value can be evaluated against the χ2 distribution to see whether the
null hypothesis should be rejected. [Danger: don’t apply this test when expected cell
counts are low, like < 5.]

6. Chi-squared test.

Apply this test to all sorts of contingency tables, if you have a model with k parameters
that predicts expected values Eij for all cells. You calculate the X2 statistic:

X2 =
∑

ij

[nij − Eij]
2

Eij

In the chi-squared test, HA is the model that each cell in your table has its own
parameter pi in one big multinomial distribution. Therefore, if your contingency table
has n cells, then the difference in the number of free parameters between HA and H0

is n− k − 1. Correspondingly, you can look up the p-value of your X2 statistic for the
χ2 distribution with n − k − 1 degrees of freedom. [Note that the distribution is a
mathematical curve, which is different from the statistic, which is a test.]

[Danger: don’t apply this test when expected cell counts are low, like < 5.]

7. Fisher’s exact test.

This test applies to a 2-by-2 contingency table:
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Y
y1 y2

X x1 n11 n12 n1∗

x2 n21 n22 n2∗

n∗1 n∗2 n

H0 is the model that all marginal totals are fixed, but that the individual cell
totals are not – alternatively stated, that the individual outcomes of X and Y are
independent. [H0 has one free parameter – why?] HA is the model that the individual
outcomes of X and Y are not independent. With Fisher’s exact test, you directly
calculate the exact likelihood of obtaining a result as extreme or more extreme than
the result that you got. [Since it is an exact test, you can use Fisher’s exact test
regardless of expected and actual cell counts.]
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