
Tree pattern matching programs 
 

There are two well-known groups of tree pattern matching programs.  One is the 
tgrep/tgrep2/tregex grouping. The other is TiGerSearch.   
 
TiGerSearch is an excellent GUI program, written in Java, which you can run on any 
major operating system, with many output options, etc. It has a powerful but complex 
query language over feature-value pairs and a GUI. The home page is here: 
 
 http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/index.shtml 
 
A tutorial covering TiGerSearch by Florian Jaeger and Roger Levy is here: 
 
 http://www.stanford.edu/dept/linguistics/corpora/material/X_tgrep+%20tigersearch_tutorial_020604.pdf 
 
But I never got into using it.  Many people somehow don’t seem to. 
 
The tgrep/tgrep2/tregex family are broadly compatible with each other, but with 
dialectal differences. Tgrep was the original tree-matching program that came with the 
Penn Treebank. It was written in very unportable C code, and has never successfully 
run on anything but a SUN. You can still run it on an old SUN at Stanford, but basically, 
forget it.  Tgrep2 was a reimplementation with extensions by Dough Rohde. It is 
command-line only and only comes ready-to-go for Linux (but it’s probably possible 
to compile it on other Unix operating systems, though not everyone has succeeded).  
It’s homepage is here: 
 
 http://tedlab.mit.edu/~dr/Tgrep2/ 
 
and tutorials at Stanford that discuss it include: 
 
 http://www.stanford.edu/dept/linguistics/corpora/material/X_tgrep+%20tigersearch_tutorial_020604.pdf 
 http://www.stanford.edu/dept/linguistics/corpora/cas-tut-tgrep.html 
 
Tregex was written at Stanford by Roger Levy and Galen Andrew.  It is also in Java and 
runs on any major operating system (after you have installed Java: if you need Java for 
your machine, go to:  
 
 http://www.java.com/getjava/   OR 
 http://java.sun.com/javase/downloads/  if you want more choices 
 
Thereafter, download tregex from: 
 
 http://nlp.stanford.edu/software/tregex.shtml 
 
For tgrep2 vs. tregex, each has some advantages and disadvantages. But I’ll be using 
tregex.  The below table summarizes their relative merits in a hopefully not too biased 
way: 
 
 Tgrep2 tregex 
Available for OSes other than Linux No Yes 



Has a GUI No Yes 
Command-line use Yes Yes 
Has a decent manual Yes No 
Supports macros Yes No 
Speed Fast (preindexed) Slow (isn’t) 
Can run on output of previous search No Yes 
Headship, constrained dominance, and variables 
in queries 

No Yes 

 



Exercise 
 
Some of this exercise is adapted from a tutorial by Liz Coppock, Florian Jaeger, and 
Neal Snider, which you can now find here: 
 
 http://www.bcs.rochester.edu/people/fjaeger/teaching/tutorials/TGrep2/LabSyntax-Tutorial.html 
 
You may find it interesting to look at the original.  But note that you can only use the 
material as is with tgrep2 not tregex.  In particular, it extensively makes use of 
macros…. 
 
These searches look for complement clauses that either have a "that" complementizer 
or no complementizer at all. An example would be "Neal didn't think (that) I would 
mess around with this". 
 
Unless you know a lot about Penn Treebank structures, the first thing to do is to get a 
sense of how the Penn Treebank codes some structures.  The verb ‘tell’ takes a lot of 
that-complements, so search for sentences with ‘told’ in them: 
 
 told 
 
This suggests that roughly what we want is a VP with an SBAR under it that has either 
an IN that is ‘that’ or a –NONE-.  So ones with ‘that’ are: 
 
 VP < (SBAR < (IN < that)) 
 
And ones with no ‘that’ are: 
 
 VP < (SBAR < /^-NONE-$/) 
 
Note that things that aren’t just letters have to be written as regular expressions….. 
 
The first match of this expression raises analytic questions.  Do we want to have 
sentences ending in ‘researchers reported’ count?  Should that construction be rather 
seen as a parenthetical? We  might decide to stick to cases where the SBAR is really 
part of the VP.  One way to do that seems to be to make sure that the S node is not a  
–NONE- coindexed with something else: 
 
 VP < (SBAR < /^-NONE-$/ !< (S < /^-NONE-$/)) 
 
For most situations it makes most sense to count total matches. (Tregex gives you this 
by default; for tgrep2, you need to look at the –a and -f flags.)  You need to check 
enough trees to see that the output is sensible. In particular, you might want to keep 
going until you find a tree with 2 matches, to check that you do want to count that as 
2.  Seems reasonable to me. 
 
1. Write a corresponding query for VPs with an overt ‘that’ SBAR complement. 
 
Let’s start with the most basic statistics: 
 



 Number of SBAR in VPs with ‘that’:   3415 
 Number of SBAR in VPs with 0 complementizer: 6745 
 
R 
 
For statistics in this class, we will use R.  You can get it from http://www.r-project.org/ 
(follow the download links). 
 
In another window fire up R.  You can do arithmetic in R.  It’s easier to do it in a 
calculator program, but it’s one place to start…. 
 

> 3415 / 6745 
[1] 0.506301 
> 6745 / (6745+3415) 
[1] 0.663878 

 
Deletion occurs almost exactly two-thirds of the time.   
 
A simple question is whether that rate is true for particular verbs.  Let’s try ‘tell’ in its 
various forms: 
 
 VP < (/^VB/ < tell|tells|told|telling) < (SBAR < /^-NONE-$/ !< (S < /^-NONE-$/)) 
 
2. Write the corresponding query for VPs with an overt ‘that’ SBAR complement. 
 
We get the following statistics: 
 
 VP[tell] with SBAR[that]: 103 
 VP[tell] with SBAR[none]:   64 
 
Less deletions of ‘that’ with ‘tell’!   
 
 > 64 / (103+64) 

[1] 0.3832335 
 
What about for ‘say’: 
 
 VP[say] with SBAR[that]:   669 
 VP[say] with SBAR[none]: 4965 
  
Worrying fact: note that: 
 
 > (669 + 4965)/(3415 + 6745) 

[1] 0.5545276 
 
But the percentage of that-deletion is very different: 
 

> 4965/(4965+669) 
[1] 0.8812567 

 



i.e., over half of all instances of that-clause complements in the corpus are with say. 
Such highly skewed distributions are unfortunately all too common with language. 
 
Okay, so why don’t we try it with a rarer verb, say remark: 
 
 VP[remark] with SBAR[that]: 3 
 VP[remark] with SBAR[none]: 1 
  
Ah, that’s more typical of what you get with language data, if worrying in a very 
different way….  
 
The percentage of that-deletion here is easy to do in your head: 0.25. 
 
And one more verb know: 
 
 VP[know] with SBAR[that]:  33 
 VP[know] with SBAR[none]:  62 
 
Now we’ll get to use R to do something other than be a calculator.  A significance test.  
But first we’ll do some stuff with Excel, to understand what is going on…. 
 
We’ll make the 2x2 contingency table, and then run some tests on it… 
 

> tell.say <- matrix(c(103, 64, 669, 4965), 2) 
> tell.remark <- matrix(c(103, 64, 3, 1), 2) 
> know.remark <- matrix(c(33, 62, 3, 1), 2) 
> tell.say 
     [,1] [,2] 
[1,]  103  669 
[2,]   64 4965 
> chisq.test(tell.say) 
 
 Pearson's Chi-squared test with Yates' continuity correction 
 
data:  tell.say  
X-squared = 344.384, df = 1, p-value < 2.2e-16 
 
> chisq.test(tell.say, correct=F) 
 
 Pearson's Chi-squared test 
 
data:  tell.say  
X-squared = 348.6874, df = 1, p-value < 2.2e-16 
 
> chisq.test(know.remark, correct=F) 
 
 Pearson's Chi-squared test 
 
data:  know.remark  
X-squared = 2.689, df = 1, p-value = 0.1010 
 
Warning message: 



Chi-squared approximation may be incorrect in: chisq.test(know.remark, correct = F)  
> chisq.test(know.remark) 
 
 Pearson's Chi-squared test with Yates' continuity correction 
 
data:  know.remark  
X-squared = 1.2305, df = 1, p-value = 0.2673 
 
Warning message: 
Chi-squared approximation may be incorrect in: chisq.test(know.remark)  
> fisher.test(know.remark) 
 
 Fisher's Exact Test for Count Data 
 
data:  know.remark  
p-value = 0.1351 
alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
 0.00333321 2.35026666  
sample estimates: 
odds ratio  
 0.1806426  

 
The differences looked at above are for patterns of different verbs.  It’s important to 
realize that there are often lexical differences, but there are other hypotheses that are 
often rather more interesting to linguists.  Here are two more interesting hypotheses to 
collect counts on. 
 
A. Definiteness hierarchy 
 

THAT-omission (the rate of ZERO complementizers) is higher for CCs with 
pronoun subjects than for CCs with definite NP subjects. For the current 
purpose we treat all and only NPs that start with "the" as definite NPs. 
 

The SBAR directly governs a clausal node /^S/ which directly governs a subject node 
/^NP-SBJ/. You can look up the relevant tags for determiner and for pronoun in a list 
of Penn Treebank tags or just ask about a word like the or she.  
 
B. Adjacency 
 
THAT-omission is lower for CCs that are not adjacent to the embedding verb. 
 
Our current pattern finds that clauses anywhere in a VP.  We might differentiate ones 
that are usually next to the verb from ones where there is intervening material.  Rather 
than using the dominance operators (<, >), look at the precedence operators (.. . ,  ,, 
etc.).  You can match any node with two underscores __.  Think about how you can 
express this!  One skill to learn is how to get clever at expressing ideas in tgrep 
language. 
 
What types of interveners do you find in practice? Do you think there would be a 
difference between the different types of interveners and their effect on that omission? 
(Speculate). 


