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Figure 15.7 An example of linear regression. The line y = 0.25x + 1 is the

best least-squares fit for the four points (1,1), (2,2), (6,1.5), (7,3.5). Arrows show

which points on the line the original points are projected to.

⇔ −
∑n

i=1
(xi − x̄)(yi − ȳ)+m

∑n

i=1
(xi − x̄)

2 = 0

⇔ m =

∑n
i=1(xi − x̄)(yi − ȳ)
∑n
i=1(xi − x̄)

2
(15.10)

Figure 15.7 shows an example of a least square fit for the four points

(1,1), (2,2), (6,1.5), and (7,3.5). We have: x̄ = 4, ȳ = 2,

m =

∑n
i=1(xi − x̄)(yi − ȳ)
∑n
i=1(xi − x̄)

2
=

6.5

26
= 0.25

and

b = ȳ −mx̄ = 2− 0.25× 4 = 1

15.4.2 Singular Value Decomposition

As we have said, we can view Latent Semantic Indexing as a method of

word co-occurrence analysis. Instead of using a simple word overlap

measure like the cosine, we instead use a more sophisticated similar-

ity measure that makes better similarity judgements based on word co-

occurrence. Equivalently, we can view SVD as a method for dimensionality
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reduction. The relation between these two viewpoints is that in the pro-

cess of dimensionality reduction, co-occurring terms are mapped onto

the same dimensions of the reduced space, thus increasing similarity in

the representation of semantically similar documents.

Co-occurrence analysis and dimensionality reduction are two ‘func-

tional’ ways of understanding LSI. We now look at the formal definition

of LSI. LSI is the application of Singular Value Decomposition to term-by-

document matrices in information retrieval. SVD takes a matrix A and

represents it as Â in a lower dimensional space such that the “distance”

between the two matrices as measured by the 2-norm is minimized:

∆ = ‖A− Â‖2(15.11)

The 2-norm for matrices is the equivalent of Euclidean distance for vec-

tors. SVD is in fact very similar to fitting a line, a one-dimensional object,

to a set of points, which exists in the two-dimensional plane. Figure 15.7

indicates with arrows which point on the one-dimensional line each of

the original points corresponds to.

Just as the linear regression in figure 15.7 can be interpreted as pro-

jecting a two-dimensional space onto a one-dimensional line, so does

SVD project an m-dimensional space onto a k-dimensional space where

k � m. In our application (word-document matrices), m is the number

of word types in the collection. Values of k that are frequently chosen

are 100 and 150. The projection transforms a document’s vector in m-

dimensional word space into a vector in the k-dimensional reduced space.

One possible source of confusion is that equation (15.11) compares the

original matrix and a lower-dimensional approximation. Shouldn’t the

second matrix have fewer rows and columns, which would make equa-

tion (15.11) ill-defined? The analogy with line fitting is again helpful here.

The fitted line exists in two dimensions, but it is a one-dimensional ob-

ject. The same is true for Â: it is a matrix of lower rank, that is, it could

be represented in a lower-dimensional space by transforming the axes of

the space. But for the particular axes chosen it has the same number of

rows and columns as A.

The SVD projection is computed by decomposing the document-by-



M
an

ni
ng

 &
 S

ch
ue

tz
e,

 F
SN

LP
 (c

)

19

99
,2

00
0

560 15 Topics in Information Retrieval

T =





















Dim. 1 Dim. 2 Dim. 3 Dim. 4 Dim. 5

cosmonaut −0.44 −0.30 0.57 0.58 0.25

astronaut −0.13 −0.33 −0.59 0.00 0.73

moon −0.48 −0.51 −0.37 0.00 −0.61

car −0.70 0.35 0.15 −0.58 0.16

truck −0.26 0.65 −0.41 0.58 −0.09





















Figure 15.8 The matrix T of the SVD of the matrix in figure 15.5. Values are

rounded.

S =

















2.16 0.00 0.00 0.00 0.00

0.00 1.59 0.00 0.00 0.00

0.00 0.00 1.28 0.00 0.00

0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.39

















Figure 15.9 The matrix of singular values of the SVD of the matrix in fig-

ure 15.5. Values are rounded.

term matrixAt×d into the product of three matrices,1 Tt×n, Sn×n, andDd×n:

At×d = Tt×nSn×n
(

Dd×n
)

T(15.12)

where n = min(t, d). We indicate dimensionality by subscripts: A has t

rows and d columns, T has t rows and n columns and so on. DT is the

transpose of D, the matrix D rotated around its diagonal: Dij =
(

DT
)

ji .

Examples of A, T , S, and D are given in figure 15.5 and figures 15.8

through 15.10. Figure 15.5 shows an example of A. A contains the docu-

ment vectors with each column corresponding to one document. In other

words, element aij of the matrix records how often term i occurs in doc-

ument j . The counts should be appropriately weighted (as discussed in

section 15.2). For simplicity of exposition, we have not applied weighting

and assumed term frequencies of 1.

1. Technically, this is the definition of the so-called ‘reduced SVD.’ The full SVD takes the

form At×d = Tt×tSt×d(Dd×d)
T, where the extra rows or columns of S are zero vectors,

and T and D are square orthogonal matrices (Trefethen and Bau 1997: 27).
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DT =





















d1 d2 d3 d4 d5 d6

Dimension 1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12

Dimension 2 −0.29 −0.53 −0.19 0.63 0.22 0.41

Dimension 3 0.28 −0.75 0.45 −0.20 0.12 −0.33

Dimension 4 0.00 0.00 0.58 0.00 −0.58 0.58

Dimension 5 −0.53 0.29 0.63 0.19 0.41 −0.22





















Figure 15.10 The matrix DT of the SVD of the matrix in figure 15.5. Values are

rounded.

Figures 15.8 and 15.10 show T and D, respectively. These matrices

have orthonormal columns. This means that the column vectors haveorthonormal

unit length and are all orthogonal to each other. (If a matrix C has or-

thonormal columns, then CTC = I, where I is the diagonal matrix with a

diagonal of 1’s, and zeroes elsewhere. So we have T TT = DTD = I.)

We can view SVD as a method for rotating the axes of the n-dimensional

space such that the first axis runs along the direction of largest variation

among the documents, the second dimension runs along the direction

with the second largest variation and so forth. The matrices T and D

represent terms and documents in this new space. For example, the first

row of T corresponds to the first row of A, and the first column of DT

corresponds to the first column of A.

The diagonal matrix S contains the singular values of A in descending

order (as in figure 15.9). The ith singular value indicates the amount

of variation along the ith axis. By restricting the matrices T , S, and D

to their first k < n columns one obtains the matrices Tt×k, Sk×k, and

(Dd×k)
T. Their product Â is the best least squares approximation of A

by a matrix of rank k in the sense defined in equation (15.11). One can

also prove that SVD is ‘almost’ unique, that is, there is only one possible

decomposition of a given matrix.2 See Golub and van Loan (1989) for an

extensive treatment of SVD including a proof of the optimality property.

That SVD finds the optimal projection to a low-dimensional space is the

2. For any given SVD solution, you can get additional non-identical ones by flipping signs

in corresponding left and right singular vectors of T and D, and, if there are two or more

identical singular values, then the subspace determined by the corresponding singular

vectors is unique, but can be described by any appropriate orthonormal basis vectors.

But, apart from these cases, SVD is unique.
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d1 d2 d3 d4 d5 d6

Dimension 1 −1.62 −0.60 −0.44 −0.97 −0.70 −0.26

Dimension 2 −0.46 −0.84 −0.30 1.00 0.35 0.65

Figure 15.11 The matrix B2×d = S2×2D
T

2×d of documents after rescaling with

singular values and reduction to two dimensions. Values are rounded.

d1 d2 d3 d4 d5 d6

d1 1.00

d2 0.78 1.00

d3 0.95 0.94 1.00

d4 0.47 −0.18 0.17 1.00

d5 0.74 0.16 0.49 0.94 1.00

d6 0.10 −0.54 −0.22 0.93 0.75 1.00

Table 15.9 The matrix of document correlations ETE where E is B with length-

normalized columns. For example, the normalized correlation coefficient of d3

and d2 (when represented as in figure 15.11) is 0.88. Values are rounded.

key property for exploiting word co-occurrence patterns. SVD represents

terms and documents in the lower dimensional space as well as possible.

In the process, some words that have similar co-occurrence patterns are

projected (or collapsed) onto the same dimension. As a consequence, the

similarity metric will make topically similar documents and queries come

out as similar even if different words are used for describing the topic. If

we restrict the matrix in figure 15.8 to the first two dimensions, we end

up with two groups of terms: space exploration terms (cosmonaut, as-

tronaut, and moon) which have negative values on the second dimension

and automobile terms (car and truck) which have positive values on the

second dimension. The second dimension directly reflects the different

co-occurrence patterns of these two groups: space exploration terms only

co-occur with other space exploration terms, automobile terms only co-

occur with other automobile terms (with one exception: the occurrence

of car in d1). In some cases, we will be misled by such co-occurrence

patterns and wrongly infer semantic similarity. However, in most cases

co-occurrence is a valid indicator of topical relatedness.

These term similarities have a direct impact on document similarity.

Let us assume a reduction to two dimensions. After rescaling with the

singular values, we get the matrix B = S2×2D
T

2×d shown in figure 15.11,
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where S2×2 is S restricted to two dimensions (with the diagonal elements

2.16, 1.59). Matrix B is a reduced dimensionality representation of the

documents in the original matrix A, and is what was shown in figure 15.6.

Table 15.9 shows the similarities between documents when they are

represented in this new space. Not surprisingly, there is high similarity

between d1 and d2 (0.78) and d4, d5, and d6 (0.94, 0.93, 0.75). These

document similarities are about the same in the original space (i.e., when

we compute correlations for the original document vectors in figure 15.5).

The key change is that d2 and d3, whose similarity is 0.00 in the original

space, are now highly similar (0.94). Although d2 and d3 have no common

terms, they are now recognized as being topically similar because of the

co-occurrence patterns in the corpus.

Notice that we get the same similarity as in the original space (that is,

zero similarity) if we compute similarity in the transformed space without

any dimensionality reduction. Using the full vectors from figure 15.10

and rescaling them with the appropriate singular values we get:

−0.28×−0.20× 2.162 +−0.53×−0.19× 1.592+

−0.75× 0.45× 1.282 + 0.00× 0.58× 1.002 + 0.29× 0.63× 0.392 ≈ 0.00

(If you actually compute this expression, you will find that the answer is

not quite zero, but this is only because of rounding errors. But this is as

good a point as any to observe that many matrix computations are quite

sensitive to rounding errors.)

We have computed document similarity in the reduced space using the

product of S and DT. The correctness of this procedure can be seen by

looking at ATA, which is the matrix of all document correlations for the

original space:

ATA =
(

TSDT
)

TTSDT = DSTTTTSDT = DSTSDT = (SDT)T(SDT) = BTB(15.13)

Because T has orthonormal columns, we have T TT = I. Furthermore,

since S is diagonal, S = ST. Term similarities are computed analogously

since one observes that the term correlations are given by:

AAT = TSDT
(

TSDT
)

T = TSDTDSTTT = (TS)(TS)T(15.14)

One remaining problem for a practical application is how to fold que-

ries and new documents into the reduced space. The SVD computation

only gives us reduced representations for the document vectors in ma-

trix A. We do not want to do a completely new SVD every time a new
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query is launched. In addition, in order to handle large corpora efficiently

we may want to do SVD for only a sample of the documents (for example

a third or a fourth). The remaining documents would then be folded in.

The equation for folding documents into the space can again be derived

from the basic SVD equation:

A = TSDT(15.15)

⇔ TTA = TTTSDT

⇔ TTA = SDT

So we just multiply the query or document vector with the transpose of

the term matrix T (after it has been truncated to the desired dimensional-

ity). For example, for a query vector ~q and a reduction to dimensionality

k, the query representation in the reduced space is Tt×k
T~q.

15.4.3 Latent Semantic Indexing in IR

The application of SVD to information retrieval was originally proposed

by a group of researchers at Bellcore (Deerwester et al. 1990) and called

Latent Semantic Indexing (LSI) in this context. LSI has been comparedLatent Semantic

Indexing to standard vector space search on several document collections. It was

found that LSI performs better than vector space search in many cases,

especially for high-recall searches (Deerwester et al. 1990; Dumais 1995).

LSI’s strength in high-recall searches is not surprising since a method that

takes co-occurrence into account is expected to achieve higher recall. On

the other hand, due to the noise added by spurious co-occurrence data

one sometimes finds a decrease in precision.

The appropriateness of LSI also depends on the document collection.

Recall the example of the vocabulary problem in figure 15.8. In a hetero-

geneous collection, documents may use different words to refer to the

same topic like HCI and user interface in the figure. Here, LSI can help

identify the underlying semantic similarity between seemingly dissimilar

documents. However, in a collection with homogeneous vocabulary, LSI

is less likely to be useful.

The application of SVD to information retrieval is called Latent Seman-

tic Indexing because the document representations in the original term

space are transformed to representations in a new reduced space. The

dimensions in the reduced space are linear combinations of the original

dimensions (this is so since matrix multiplications as in equation (15.16)


